Detection of spam-posting accounts on Twitter

被引:76
作者
Inuwa-Dutse, Isa [1 ]
Liptrott, Mark [1 ]
Korkontzelos, Ioannis [1 ]
机构
[1] Edge Hill Univ, Dept Comp Sci, Ormskirk, Lancs, England
基金
欧盟地平线“2020”;
关键词
Social network; Twitter; Spam; Social media; Twitter microblog; Spam detection; INFORMATION;
D O I
10.1016/j.neucom.2018.07.044
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Online Social Media platforms, such as Facebook and Twitter, enable all users, independently of their characteristics, to freely generate and consume huge amounts of data. While this data is being exploited by individuals and organisations to gain competitive advantage, a substantial amount of data is being generated by spam or fake users. One in every 200 social media messages and one in every 21 tweets is estimated to be spam. The rapid growth in the volume of global spam is expected to compromise research works that use social media data, thereby questioning data credibility. Motivated by the need to identify and filter out spam contents in social media data, this study presents a novel approach for distinguishing spam vs. non-spam social media posts and offers more insight into the behaviour of spam users on Twitter. The approach proposes an optimised set of features independent of historical tweets, which are only available for a short time on Twitter. We take into account features related to the users of Twitter, their accounts and their pairwise engagement with each other. We experimentally demonstrate the efficacy and robustness of our approach and compare it to a typical feature set for spam detection in the literature, achieving a significant improvement on performance. In contrast to prior research findings, we observe that an average automated spam account posted at least 12 tweets per day at well defined periods. Our method is suitable for real-time deployment in a social media data collection pipeline as an initial preprocessing strategy to improve the validity of research data. (c) 2018 The Authors. Published by Elsevier B.V.
引用
收藏
页码:496 / 511
页数:16
相关论文
共 49 条
[1]   Combating Comment Spam with Machine Learning Approaches [J].
Alsaleh, Mansour ;
Alarifi, Abdulrahman ;
Al-Quayed, Fatima ;
Al-Salman, AbdulMalik .
2015 IEEE 14TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), 2015, :295-300
[2]  
[Anonymous], 2009, P NETW DISTR SYST SE
[3]  
[Anonymous], 2014, TECHNICAL REPORT
[4]  
[Anonymous], TWITT STREAM APIS
[5]  
[Anonymous], 2015, WWW WORKSHOP MAKING
[6]  
[Anonymous], PATTERN RECOGN LETT
[7]  
[Anonymous], TECHNICAL REPORT
[8]  
[Anonymous], 2018, IEEE TRANS COMPUT SO, DOI DOI 10.1109/TCSS.2017.2773581
[9]  
[Anonymous], THE TWITT RUL
[10]  
[Anonymous], P EL MESS ANT SPAM C