Minimal distances in quasicrystals

被引:22
作者
Masakova, Z [1 ]
Patera, J
Pelantova, E
机构
[1] Czech Tech Univ, Dept Math, CR-16635 Prague, Czech Republic
[2] Univ Montreal, Ctr Rech Math, Montreal, PQ H3C 3J7, Canada
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1998年 / 31卷 / 06期
关键词
D O I
10.1088/0305-4470/31/6/006
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A general expression is derived for the minimal distance epsilon(Omega) between points of a cut and project quasicrystal Sigma(Omega) in R-n with a convex acceptance window Omega. The study of minimal distances amounts to the study of one-dimensional quasicrystals and their rescalings which occur in Sigma(Omega). For an n-dimensional ball as Omega, the exact value of epsilon(Omega) is calculated for any radius; for Omega 'close' to a ball, a simple formula is given; for all Omega upper and lower bounds for epsilon(Omega) are found. The latter are easy to use even when Omega is of a complicated shape.
引用
收藏
页码:1539 / 1552
页数:14
相关论文
共 16 条
[1]  
BERMAN S, 1994, J PHYS A, V27, P566
[2]  
CHEN L, 1997, FIELDS I MONOGRAPH S, V10
[3]   Tau-wavelets of Haar [J].
Gazeau, JP ;
Patera, J .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (15) :4549-4559
[4]  
GAZEAU JP, 1995, SYMMETRIES STRUCTURA
[5]  
Janot C., 1994, QUASICRYSTALS PRIMER
[6]   Inflation centres of the cut and project quasicrystals [J].
Masakova, Z ;
Patera, J ;
Pelantova, E .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (05) :1443-1453
[7]  
MASAKOVA Z, 1998, UNPUB J PHYS A
[8]  
MEYER Y, 1995, P HOUCH QUAS ED PHYS, P3
[9]  
Minkowski H., 1953, GEOMETRIE ZAHLEN
[10]   COLORINGS OF QUASI-CRYSTALS [J].
MOODY, RV ;
PATERA, J .
CANADIAN JOURNAL OF PHYSICS, 1994, 72 (7-8) :442-452