A novel robust algorithm for position and orientation detection based on cascaded deep neural network

被引:9
作者
Lin, Weiyang [1 ,2 ]
Ren, Xinyang [1 ,2 ]
Zhou, Tiantian [1 ,2 ]
Cheng, Xiaojing [1 ,2 ]
Tong, Mingsi [1 ,2 ]
机构
[1] Harbin Inst Technol, Minist Educ, Key Lab Microsyst & Microstruct Mfg, Harbin 150001, Heilongjiang, Peoples R China
[2] Harbin Inst Technol, Res Inst Intelligent Control & Syst, Harbin 150001, Heilongjiang, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Object detection; Convolution neural network; Mixed deep neural network; NONLINEAR-SYSTEMS;
D O I
10.1016/j.neucom.2018.04.061
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Estimating position and orientation of the object by using machine vision is essential in industrial automation. The traditional canny operator and Hough transform edge detection algorithm is widely used, but its accuracy and real-time object recognition in complex backgrounds are very limited. Other algorithms such as SVM and BP network are usually inaccurate for regression issues. In this paper, the method of a cascade of convolution networks is proposed which results in high precision pose estimates. SSD is utilized to obtain the bounding box of the object to narrow down the recognition range. Convolution neural network is utilized to detect the orientation of the object. This method can extract weak features of the sample image. In generally, the proposed method possess a greatly improved accuracy and recognition rate compared with the traditional algorithm. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:138 / 146
页数:9
相关论文
共 37 条
[11]   ESLpred: SVM-based method for subcellular localization of eukaryotic proteins using dipeptide composition and PSI-BLAST [J].
Bhasin, M ;
Raghava, GPS .
NUCLEIC ACIDS RESEARCH, 2004, 32 :W414-W419
[12]   A review on neural networks with random weights [J].
Cao, Weipeng ;
Wang, Xizhao ;
Ming, Zhong ;
Gao, Jinzhu .
NEUROCOMPUTING, 2018, 275 :278-287
[13]  
CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411
[14]   A deep neural network for real-time detection of falling humans in naturally occurring scenes [J].
Fan, Yaxiang ;
Levine, Martin D. ;
Wen, Gongjian ;
Qiu, Shaohua .
NEUROCOMPUTING, 2017, 260 :43-58
[15]   Hough Forests for Object Detection, Tracking, and Action Recognition [J].
Gall, Juergen ;
Yao, Angela ;
Razavi, Nima ;
Van Gool, Luc ;
Lempitsky, Victor .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (11) :2188-2202
[16]   Recent advances in convolutional neural networks [J].
Gu, Jiuxiang ;
Wang, Zhenhua ;
Kuen, Jason ;
Ma, Lianyang ;
Shahroudy, Amir ;
Shuai, Bing ;
Liu, Ting ;
Wang, Xingxing ;
Wang, Gang ;
Cai, Jianfei ;
Chen, Tsuhan .
PATTERN RECOGNITION, 2018, 77 :354-377
[17]   Embedded neural network for real-time animal behavior classification [J].
Gutierrez-Galan, D. ;
Dominguez-Morales, Juan P. ;
Cerezuela-Escudero, E. ;
Rios-Navarro, A. ;
Tapiador-Morales, R. ;
Rivas-Perez, M. ;
Dominguez-Morales, M. ;
Jimenez-Fernandez, A. ;
Linares-Barranco, A. .
NEUROCOMPUTING, 2018, 272 :17-26
[18]   Event-based filtering for time-varying nonlinear systems subject to multiple missing measurements with uncertain missing probabilities [J].
Hu, Jun ;
Wang, Zidong ;
Alsaadi, Fuad E. ;
Hayat, Tasawar .
INFORMATION FUSION, 2017, 38 :74-83
[19]   A variance-constrained approach to recursive state estimation for time-varying complex networks with missing measurements [J].
Hu, Jun ;
Wang, Zidong ;
Liu, Steven ;
Gao, Huijun .
AUTOMATICA, 2016, 64 :155-162
[20]   Quantised recursive filtering for a class of nonlinear systems with multiplicative noises and missing measurements [J].
Hu, Jun ;
Wang, Zidong ;
Shen, Bo ;
Gao, Huijun .
INTERNATIONAL JOURNAL OF CONTROL, 2013, 86 (04) :650-663