A First Study of Using B-splines in Nonparametric System Identification

被引:0
作者
Csurcsia, Peter Zoltan [1 ,2 ]
Schoukens, Johan [3 ]
Kollar, Istvan [4 ]
机构
[1] Vrije Univ Brussel, Brussels, Belgium
[2] Budapest Univ Technol & Econ, Brussels, Belgium
[3] Vrije Univ Brussel, Dept Fundamental Elect & Instrumentat, Brussels, Belgium
[4] Budapest Univ Technol & Econ, Dept Measurement & Informat Syst, Budapest, Hungary
来源
2013 IEEE 8TH INTERNATIONAL SYMPOSIUM ON INTELLIGENT SIGNAL PROCESSING (WISP) | 2013年
关键词
curve fitting; impulse response function; time-invariant systems; system identification; non-parametric identification; B-spline; smoothing; transient handling; noise rejection; order reduction; ALGORITHM;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This contribution presents a smoothing technique for the identification of systems with a smooth impulse response function. Using a generalized and modified B-spline based methodology, an impulse response function can be estimated in the time domain or a frequency response function in the frequency domain. With respect to the system dynamics, it is possible 1) to reduce the disturbing noise 2) to decrease the effect of transients 3) to reduce the number of model parameters.
引用
收藏
页码:87 / 92
页数:6
相关论文
共 9 条
[1]  
[Anonymous], DIGITAL SIGNAL PROCE
[2]  
Csurcsia PZ, 2012, IEEE IMTC P, P1056
[3]   AN ALGORITHM FOR SURFACE-FITTING WITH SPLINE FUNCTIONS [J].
DIERCKX, P .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1981, 1 (03) :267-283
[4]  
Lancaster P., 1988, CURVE SURFACE FITTIN
[5]  
Lataire J, 2011, THESIS
[6]  
Pintelon Rik, 2012, System identification: a frequency domain approach
[7]  
Prautzsch H., 2001, BEZIER B SPLINE TECH
[8]  
Spath H., 1995, 2 DIMENSIONAL SPLINE
[9]  
Vanlanduit S., 2001, THESIS