Noise variance estimate for blast furnace temperature of hot metal based on Autoregressive model in presence of noise

被引:0
|
作者
Zhang, Yong [1 ,2 ]
Zhao, Zhe [1 ]
Cui, Guimei [1 ]
机构
[1] Inner Mongolia Univ Sci & Technol, Sch Informat Engn, Baotou 014010, Peoples R China
[2] Northeastern Univ, State Key Lab Synthetically Automat Proc Ind, Shenyang 110819, Peoples R China
来源
2015 27TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC) | 2015年
关键词
Parameter Estimate; Noise Variance; Noisy AutoRegressive (AR) Model; Blast Furnace; PARAMETER-ESTIMATION; SYSTEMS; ALGORITHM;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Noise variance is an important variable for data filtering. In order to estimate the noise variance of hot iron temperature in process of blast furnace (BF) ironmaking, this work will study parameter estimate of AutoRegressive (AR) process in presence of noise based on BF observed data. Furthermore, a given instrumental variable choosing method and recursive least squares algorithm will be delivered in this paper. The proposed method requires loose assumptions, which are more close to the data fact in blast furnace ironmaking process. Finally, noise variance estimate results are shown by simulation tests.
引用
收藏
页码:6461 / 6465
页数:5
相关论文
共 38 条
  • [31] Mathematical Model for Blast Furnace Burden Optimization Based on the High-temperature Reactivity
    Wu, Shengli
    Han, Hongliang
    Liu, Xiaoqin
    ISIJ INTERNATIONAL, 2010, 50 (07) : 987 - 993
  • [32] Optimal method of selecting silicon content data in blast furnace hot metal based on k-means++
    Yin L.
    Guan Y.
    Jiang Z.
    Xu X.
    Huagong Xuebao/CIESC Journal, 2020, 71 (08): : 3661 - 3670
  • [33] Bayesian Block Structure Sparse Based T-S Fuzzy Modeling for Dynamic Prediction of Hot Metal Silicon Content in the Blast Furnace
    Li, Junpeng
    Hua, Changchun
    Yang, Yana
    Guan, Xinping
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2018, 65 (06) : 4933 - 4942
  • [34] Recursive search-based identification algorithms for the exponential autoregressive time series model with coloured noise
    Xu, Huan
    Ding, Feng
    Yang, Erfu
    IET CONTROL THEORY AND APPLICATIONS, 2020, 14 (02) : 262 - 270
  • [35] Data-Driven Bayesian-Based Takagi-Sugeno Fuzzy Modeling for Dynamic Prediction of Hot Metal Silicon Content in Blast Furnace
    Li, Junpeng
    Hua, Changchun
    Yang, Yana
    Guan, Xinping
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2022, 52 (02): : 1087 - 1099
  • [36] Performance analysis of hot metal temperature prediction in a blast furnace and expert suggestion system proposal using neural, statistical and fuzzy models
    Bozkurt, Erdogan
    Orak, Ilhami M.
    Tunckaya, Yasin
    METALLURGICAL RESEARCH & TECHNOLOGY, 2021, 118 (03)
  • [37] Prediction of hot metal silicon content for blast furnace based on multi-layer online sequential extreme learning machine
    Su, Xiaoli
    Zhang, Sen
    Yin, Yixin
    Hui, Yuanzhe
    Xiao, Wendong
    2018 37TH CHINESE CONTROL CONFERENCE (CCC), 2018, : 8025 - 8030
  • [38] Noise-insensitive and edge-preserving resolution upconversion scheme for digital image based on the spatial general autoregressive model
    Hao Fei
    Shi Jinfei
    Chen Ruwen
    Zhu Songqing
    Zhang Zhisheng
    IET IMAGE PROCESSING, 2016, 10 (04) : 280 - 288