Pea DNA helicase 45 overexpression in tobacco confers high salinity tolerance without affecting yield

被引:153
作者
Sanan-Mishra, N [1 ]
Pham, XH [1 ]
Sopory, SK [1 ]
Tuteja, N [1 ]
机构
[1] Int Ctr Genet Engn & Biotechnol, New Delhi 110067, India
关键词
DEAD box protein; elF-4A; salinity stress;
D O I
10.1073/pnas.0406485102
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Salt tolerance is an important trait that is required to overcome salinity-induced reduction in plant productivity. We have reported previously the isolation of a pea DNA helicase 45 (PDH45) that exhibits striking homology with the eukaryotic translation initiation factor eIF-4A. Here, we report that PDH45 mRNA is induced in pea seedlings in response to high salt, and its overexpression driven by a constitutive cauliflower mosaic virus(-35)S promoter in tobacco plants confers salinity tolerance, thus suggesting a previously undescribed pathway for manipulating stress tolerance in crop plants. The T-0 transgenic plants showed high levels of PDH45 protein in normal and stress conditions, as compared with WT plants. The T-0 transgenics also showed tolerance to high salinity as tested by a leaf disk senescence assay. The T-1 transgenics were able to grow to maturity and set normal viable seeds under continuous salinity stress without any reduction in plant yield in terms of seed weight. Measurement of Na+ ions in different parts of the plant showed higher accumulation in the old leaves and negligible accumulation in seeds of T-1 transgenic lines as compared with the WT plants. The possible mechanism of salinity tolerance is discussed. Overexpression of PDH45 provides a possible example of the exploitation of DNA/RNA unwinding pathways for engineering salinity tolerance without affecting yield in crop plants.
引用
收藏
页码:509 / 514
页数:6
相关论文
共 36 条
[1]   Plant responses to water deficit [J].
Bray, EA .
TRENDS IN PLANT SCIENCE, 1997, 2 (02) :48-54
[2]   Identification of the Clostridium perfringens genes involved in the adaptive response to oxidative stress [J].
Briolat, V ;
Reysset, G .
JOURNAL OF BACTERIOLOGY, 2002, 184 (09) :2333-2343
[3]  
CHOMCZYNSKI P, 1987, ANAL BIOCHEM, V162, P156, DOI 10.1016/0003-2697(87)90021-2
[4]   Antisense suppression of phospholipase Dα retards abscisic acid- and ethylene-promoted senescence of postharvest Arabidopsis leaves [J].
Fan, L ;
Zheng, SQ ;
Wang, XM .
PLANT CELL, 1997, 9 (12) :2183-2196
[5]   Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses [J].
Garg, AK ;
Kim, JK ;
Owens, TG ;
Ranwala, AP ;
Do Choi, Y ;
Kochian, LV ;
Wu, RJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (25) :15898-15903
[6]   eIF4 initiation factors: Effectors of mRNA recruitment to ribosomes and regulators of translation [J].
Gingras, AC ;
Raught, B ;
Sonenberg, N .
ANNUAL REVIEW OF BIOCHEMISTRY, 1999, 68 :913-963
[7]   RNA helicase-like protein as an early regulator of transcription factors for plant chilling and freezing tolerance [J].
Gong, ZZ ;
Lee, H ;
Xiong, LM ;
Jagendorf, A ;
Stevenson, B ;
Zhu, JK .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (17) :11507-11512
[8]   Plant cellular and molecular responses to high salinity [J].
Hasegawa, PM ;
Bressan, RA ;
Zhu, JK ;
Bohnert, HJ .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 2000, 51 :463-499
[9]   A SIMPLE AND GENERAL-METHOD FOR TRANSFERRING GENES INTO PLANTS [J].
HORSCH, RB ;
FRY, JE ;
HOFFMANN, NL ;
EICHHOLTZ, D ;
ROGERS, SG ;
FRALEY, RT .
SCIENCE, 1985, 227 (4691) :1229-1231
[10]  
Jefferson RA., 1987, PLANT MOL BIOL REP, V5, P387, DOI DOI 10.1007/BF02667740