A note on universally optimal matrices and field independence of the minimum rank of a graph

被引:3
作者
Huang, Liang-Hao [1 ]
Chang, Gerard J. [2 ,3 ,4 ]
Yeh, Hong-Gwa [1 ]
机构
[1] Natl Cent Univ, Dept Math, Jhongli 32001, Taoyuan, Taiwan
[2] Natl Taiwan Univ, Dept Math, Taipei 10617, Taiwan
[3] Natl Taiwan Univ, Inst Math Sci, Taipei 10617, Taiwan
[4] Natl Ctr Theoret Sci, Taipei Off, Taipei, Taiwan
关键词
Minimum rank; Universally optimal matrix; Field independent; Maximum nullity; Symmetric matrix; Rank; Graph; Matrix; SYMMETRIC-MATRICES;
D O I
10.1016/j.laa.2010.03.027
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a simple graph G on n vertices, the minimum rank of G over a field F, written as mr(F) (G), is defined to be the smallest possible rank among all n x n symmetric matrices over F whose (i, j)th entry (for i not equal j) is nonzero whenever {i, j} is an edge in G and is zero otherwise. A symmetric integer matrix A such that every off-diagonal entry is 0, 1, or -1 is called a universally optimal matrix if, for all fields F, the rank of A over F is the minimum rank of the graph of A over F. Recently, Dealba et al. [L.M. Dealba, J. Grout, L Hogben, R. Mikkelson, K. Rasmussen, Universally optimal matrices and field independence of the minimum rank of a graph, Electron. J. Linear Algebra 18 (2009) 403-419] initiated the study of universally optimal matrices and established field independence or dependence of minimum rank for some families of graphs. In the present paper, more results on universally optimal matrices and field independence or dependence of the minimum rank of a graph are presented, and some results of Dealba et al. [5] are improved. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:585 / 594
页数:10
相关论文
共 10 条
[1]   Computation of minimal rank and path cover number for certain graphs [J].
Barioli, F ;
Fallat, S ;
Hogben, L .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 392 :289-303
[2]   Zero forcing sets and the minimum rank of graphs [J].
Barioli, Francesco ;
Barrett, Wayne ;
Butler, Steve ;
Cioaba, Sebastian M. ;
Cvetkovic, Dragos ;
Fallat, Shaun M. ;
Godsil, Chris ;
Haemers, Willem ;
Hogben, Leslie ;
Mikkelson, Rana ;
Narayan, Sivaram ;
Pryporova, Olga ;
Sciriha, Irene ;
So, Wasin ;
Stevanovic, Dragan ;
van der Holst, Hein ;
Vander Meulen, Kevin N. ;
Wehe, Amy Wangsness .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (07) :1628-1648
[3]   ON THE MINIMUM RANK OF NOT NECESSARILY SYMMETRIC MATRICES: A PRELIMINARY STUDY [J].
Barioli, Francesco ;
Fallat, Shaun M. ;
Hall, H. Tracy ;
Hershkowitz, Daniel ;
Hogben, Leslie ;
Van der Holst, Hein ;
Shader, Bryan .
ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2009, 18 :126-145
[4]  
Biggs N., 1993, Algebraic graph theory
[5]  
Dealba LM, 2009, ELECTRON J LINEAR AL, V18, P403
[6]   The minimum rank of symmetric matrices described by a graph: A survey [J].
Fallat, Shaun M. ;
Hogben, Leslie .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 426 (2-3) :558-582
[7]   Minimum rank problems [J].
Hogben, Leslie .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (08) :1961-1974
[8]  
HSIEH LY, 2001, THESIS U WISCONSIN M
[9]  
Imrich W, 2000, WIL INT S D
[10]   Minimum-rank matrices with prescribed graph [J].
Nylen, PM .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1996, 248 :303-316