LOCAL ASYMPTOTIC EQUIVALENCE OF PURE STATES ENSEMBLES AND QUANTUM GAUSSIAN WHITE NOISE

被引:5
作者
Butucea, Cristina [1 ]
Guta, Madalin [2 ]
Nussbaum, Michael [3 ]
机构
[1] Univ Paris Saclay, CREST, ENSAE, 5 Ave Henry Le Chatelier, F-91120 Palaiseau, France
[2] Univ Nottingham, Sch Math Sci, Univ Pk, Nottingham NG7 2RD, England
[3] Cornell Univ, Dept Math, Malott Hall, Ithaca, NY 14853 USA
关键词
Le Cam distance; local asymptotic equivalence; quantum Gaussian process; quantum Gaussian sequence; quantum states ensemble; nonparametric estimation; quadratic functionals; nonparametric sharp testing rates; STATISTICAL INFERENCE; ADAPTIVE ESTIMATION; QUBIT STATES; TOMOGRAPHY; NORMALITY; DISTANCE; MATRICES; ENTROPY; MINIMAX;
D O I
10.1214/17-AOS1672
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Quantum technology is increasingly relying on specialised statistical inference methods for analysing quantum measurement data. This motivates the development of "quantum statistics", a field that is shaping up at the overlap of quantum physics and "classical" statistics. One of the less investigated topics to date is that of statistical inference for infinite dimensional quantum systems, which can be seen as quantum counterpart of nonparametric statistics. In this paper, we analyse the asymptotic theory of quantum statistical models consisting of ensembles of quantum systems which are identically prepared in a pure state. In the limit of large ensembles, we establish the local asymptotic equivalence (LAE) of this i.i.d. model to a quantum Gaussian white noise model. We use the LAE result in order to establish minimax rates for the estimation of pure states belonging to Hermite Sobolev classes of wave functions. Moreover, for quadratic functional estimation of the same states we note an elbow effect in the rates, whereas for testing a pure state a sharp parametric rate is attained over the nonparametric Hermite Sobolev class.
引用
收藏
页码:3676 / 3706
页数:31
相关论文
共 58 条
[31]   Scalable multiparticle entanglement of trapped ions [J].
Häffner, H ;
Hänsel, W ;
Roos, CF ;
Benhelm, J ;
Chek-al-kar, D ;
Chwalla, M ;
Körber, T ;
Rapol, UD ;
Riebe, M ;
Schmidt, PO ;
Becher, C ;
Gühne, O ;
Dür, W ;
Blatt, R .
NATURE, 2005, 438 (7068) :643-646
[32]   Asymptotic estimation theory for a finite-dimensional pure state model [J].
Hayashi, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (20) :4633-4655
[33]  
Helstrom C. W., 1976, QUANTUM DETECTION ES
[34]   THE PROPER FORMULA FOR RELATIVE ENTROPY AND ITS ASYMPTOTICS IN QUANTUM PROBABILITY [J].
HIAI, F ;
PETZ, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 143 (01) :99-114
[35]  
Ingster Y.I., 2003, Lecture Notes in Statistics, V169
[36]   Estimation and detection of functions from anisotropic Sobolev classes [J].
Ingster, Yuri ;
Stepanova, Natalia .
ELECTRONIC JOURNAL OF STATISTICS, 2011, 5 :484-506
[37]   Sufficiency in quantum statistical inference [J].
Jencová, A ;
Petz, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 263 (01) :259-276
[38]  
Kahn J, 2008, Quantum Stochastics and Information: Statistics, Filtering and Control, P300, DOI [10.1142/9789812832962_0014, DOI 10.1142/9789812832962_0014]
[39]   Local Asymptotic Normality for Finite Dimensional Quantum Systems [J].
Kahn, Jonas ;
Guta, Madalin .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 289 (02) :597-652
[40]   On the Chernoff bound for efficiency of quantum hypothesis testing [J].
Kargin, V .
ANNALS OF STATISTICS, 2005, 33 (02) :959-976