LOCAL ASYMPTOTIC EQUIVALENCE OF PURE STATES ENSEMBLES AND QUANTUM GAUSSIAN WHITE NOISE

被引:5
作者
Butucea, Cristina [1 ]
Guta, Madalin [2 ]
Nussbaum, Michael [3 ]
机构
[1] Univ Paris Saclay, CREST, ENSAE, 5 Ave Henry Le Chatelier, F-91120 Palaiseau, France
[2] Univ Nottingham, Sch Math Sci, Univ Pk, Nottingham NG7 2RD, England
[3] Cornell Univ, Dept Math, Malott Hall, Ithaca, NY 14853 USA
关键词
Le Cam distance; local asymptotic equivalence; quantum Gaussian process; quantum Gaussian sequence; quantum states ensemble; nonparametric estimation; quadratic functionals; nonparametric sharp testing rates; STATISTICAL INFERENCE; ADAPTIVE ESTIMATION; QUBIT STATES; TOMOGRAPHY; NORMALITY; DISTANCE; MATRICES; ENTROPY; MINIMAX;
D O I
10.1214/17-AOS1672
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Quantum technology is increasingly relying on specialised statistical inference methods for analysing quantum measurement data. This motivates the development of "quantum statistics", a field that is shaping up at the overlap of quantum physics and "classical" statistics. One of the less investigated topics to date is that of statistical inference for infinite dimensional quantum systems, which can be seen as quantum counterpart of nonparametric statistics. In this paper, we analyse the asymptotic theory of quantum statistical models consisting of ensembles of quantum systems which are identically prepared in a pure state. In the limit of large ensembles, we establish the local asymptotic equivalence (LAE) of this i.i.d. model to a quantum Gaussian white noise model. We use the LAE result in order to establish minimax rates for the estimation of pure states belonging to Hermite Sobolev classes of wave functions. Moreover, for quadratic functional estimation of the same states we note an elbow effect in the rates, whereas for testing a pure state a sharp parametric rate is attained over the nonparametric Hermite Sobolev class.
引用
收藏
页码:3676 / 3706
页数:31
相关论文
共 58 条
[1]  
[Anonymous], N HOLLAND SERIES STA
[2]  
[Anonymous], MATH THEORY STATISTI
[3]  
[Anonymous], 2000, QUANTUM COMPUTATION
[4]  
[Anonymous], 2004, LECT NOTES PHYS
[5]  
[Anonymous], 2005, P ERATO WORKSHOP QUA
[6]   An invitation to quantum tomography [J].
Artiles, LM ;
Gill, RD ;
Guta, MI .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2005, 67 :109-134
[7]   Discriminating states:: The quantum Chernoff bound [J].
Audenaert, K. M. R. ;
Calsamiglia, J. ;
Munoz-Tapia, R. ;
Bagan, E. ;
Masanes, Ll. ;
Acin, A. ;
Verstraete, F. .
PHYSICAL REVIEW LETTERS, 2007, 98 (16)
[8]   Asymptotic error rates in quantum hypothesis testing [J].
Audenaert, K. M. R. ;
Nussbaum, M. ;
Szkola, A. ;
Verstraete, F. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 279 (01) :251-283
[9]   Comprehensive analysis of quantum pure-state estimation for two-level systems -: art. no. 062318 [J].
Bagan, E ;
Monras, A ;
Muñoz-Tapia, R .
PHYSICAL REVIEW A, 2005, 71 (06)
[10]   Separable measurement estimation of density matrices and its fidelity gap with collective protocols [J].
Bagan, E. ;
Ballester, M. A. ;
Gill, R. D. ;
Munoz-Tapia, R. ;
Romero-Isart, O. .
PHYSICAL REVIEW LETTERS, 2006, 97 (13)