Nevanlinna representations in several variables

被引:19
作者
Agler, J. [1 ]
Tully-Doyle, R. [2 ]
Young, N. J. [3 ,4 ]
机构
[1] Univ Calif San Diego, Dept Math, San Diego, CA 92103 USA
[2] Hampton Univ, Dept Math, Hampton, VA 23668 USA
[3] Univ Leeds, Sch Math, Leeds LS2 9JT, W Yorkshire, England
[4] Newcastle Univ, Sch Math & Stat, Newcastle Upon Tyne NE3 4LR, Tyne & Wear, England
基金
英国工程与自然科学研究理事会; 美国国家科学基金会;
关键词
Pick class; Cauchy transform; Self-adjoint operator; Resolvent; COMMUTING CONTRACTIONS; REALIZATIONS; DILATIONS;
D O I
10.1016/j.jfa.2016.02.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We generalize to several variables the classical theorem of Nevanlinna that characterizes the Cauchy transforms of positive measures on the real line. We show that for the Loewner class, a large class of analytic functions that have non-negative imaginary part on the upper polyhalf-plane, there are representation formulae in terms of densely-defined self-adjoint operators on a Hilbert space. We find four different representation formulae and we show that every function in the Loewner class has one of the four representations, corresponding precisely to four different growth conditions at infinity. (C) 2016 The Authors. Published by Elsevier Inc.
引用
收藏
页码:3000 / 3046
页数:47
相关论文
共 22 条
[1]   The Julia-Wolff-Caratheodory theorem in polydisks [J].
Abate, M .
JOURNAL D ANALYSE MATHEMATIQUE, 1998, 74 (1) :275-306
[2]   Boundary behavior of analytic functions of two variables via generalized models [J].
Agler, J. ;
Tully-Doyle, R. ;
Young, N. J. .
INDAGATIONES MATHEMATICAE-NEW SERIES, 2012, 23 (04) :995-1027
[3]  
AGLER J., 1990, TOPICS OPERATOR THEO, V48, P47
[4]   Operator monotone functions and Lowner functions of several variables [J].
Agler, Jim ;
McCarthy, John E. ;
Young, N. J. .
ANNALS OF MATHEMATICS, 2012, 176 (03) :1783-1826
[5]   A Carath,odory theorem for the bidisk via Hilbert space methods [J].
Agler, Jim ;
McCarthy, John E. ;
Young, N. J. .
MATHEMATISCHE ANNALEN, 2012, 352 (03) :581-624
[6]   Conservative state-space realizations of dissipative system behaviors [J].
Ball, JA ;
Staffans, OJ .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2006, 54 (02) :151-213
[7]   Conservative dilations of dissipative multidimensional systems: The commutative and non-commutative settings [J].
Ball, Joseph A. ;
Kaliuzhnyi-Verbovetskyi, Dmitry S. .
MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 2008, 19 (01) :79-122
[8]   Schur-Agler and Herglotz-Agler classes of functions: Positive-kernel decompositions and transfer-function realizations [J].
Ball, Joseph A. ;
Kaliuzhnyi-Verbovetskyi, Dmitry S. .
ADVANCES IN MATHEMATICS, 2015, 280 :121-187
[9]  
Donoghue W.F., 1974, Die Grundlehren der mathematischen Wissenschaften, V207
[10]   Classes of tuples of commuting contractions satisfying the multivariable von Neumann inequality [J].
Grinshpan, Anatolii ;
Kaliuzhnyi-Verbovetskyi, Dmitry S. ;
Vinnikov, Victor ;
Woerdeman, Hugo J. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 256 (09) :3035-3054