Preparation and Dynamic Performance of Basalt Fiber-Reinforced Lightweight Concrete Confined by Brass Strip

被引:12
作者
Lu, Song [1 ]
Xu, Jinyu [1 ,2 ]
Bai, Erlei [1 ]
Luo, Xin [3 ]
机构
[1] Air Force Engn Univ, Dept Airfield & Bldg Engn, Xian 710038, Peoples R China
[2] Northwestern Polytech Univ, Coll Mech & Civil Architecture, Xian 710072, Peoples R China
[3] Cent Mil Commiss, Dept Logist Support, Construct Engn Planning & Design Inst, Beijing 100036, Peoples R China
关键词
Porous concrete; Basalt fiber; Confined concrete; Preparation; Dynamic properties; Split Hopkinson pressure bar (SHPB); STRAIN RATES; STRESS; STRENGTH; BEHAVIOR; CERAMICS; SPECIMEN; SHPB; BAR;
D O I
10.1061/(ASCE)MT.1943-5533.0001974
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This paper aims to develop a new material with outstanding energy-absorbing performance regarding its application in protection engineering. The preparation and dynamic performance of basalt fiber-reinforced lightweight concrete confined by a brass strip (FLCB) were experimentally investigated. The FLCB specimens were first prepared based on dense packing theory. Impact compression experiments were then carried out by a phi 100-mm (phi = diameter) split Hopkinson pressure bar apparatus, which was improved by the pulse-shaping technique. The resulting stress-strain curve, dynamic deformation, and energy-absorbing characteristics were studied. The results show that FLCB, with density of 1,204.2 kg/m(3), is a kind of lightweight concrete. The stress-strain curve of FLCB can be divided into three stages: linear elastic, stress platform, and brittle failure. The stress platform stage has a significant effect on the improvement of energy-absorbing performance, and the percentage of the stress platform to the whole curve increases continuously with average strain rate. Both the ultimate strain and the energy-absorbing index are sensitive to strain rate and increase continuously with average strain rate. Furthermore, compared with conventional concrete, the production of FLCB is associated with a higher ultimate strain and energy-absorbing index, and the tendency becomes more obvious with increasing average strain rate. Therefore, FLCB includes a lightweight concrete with excellent energy-absorbing performance and this performance shows clear strain-rate dependence. Due to its features of outstanding energy absorption and low density, FLCB has a promising future to be used as antiexplosive layers in protection engineering. (C) 2017 American Society of Civil Engineers.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Effect of macro polypropylene fiber and basalt fiber on impact resistance of basalt fiber-reinforced polymer-reinforced concrete
    Wang, Qingxuan
    Ding, Yining
    Zhang, Yulin
    Castro, Cecilia
    STRUCTURAL CONCRETE, 2021, 22 (01) : 503 - 515
  • [42] Mechanical and Dynamic Properties of Basalt Fiber-Reinforced Composites with Nanoclay Particles
    Bulut, Mehmet
    Bozkurt, Omer Yavuz
    Erklig, Ahmet
    Yaykasli, Hakan
    Ozbek, Ozkan
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2020, 45 (02) : 1017 - 1033
  • [43] Bond Property between Rebars and Basalt Fiber-Reinforced Concrete after Exposure to High Temperatures
    Lu, Limin
    Xu, Weihao
    Wu, Shaohua
    Wang, Shouxing
    Zhao, Zixian
    Ji, Yongsheng
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2023, 35 (10)
  • [44] Strength of Bearing Area Confined by Fiber-Reinforced Concrete
    Wytroval, Tanner L.
    Tuchscherer, Robin G.
    ACI STRUCTURAL JOURNAL, 2016, 113 (06) : 1185 - 1195
  • [45] Experimental Study of the Thermal and Dynamic Behaviors of Polypropylene Fiber-Reinforced Concrete
    Lei, Liu
    Dong, Lizhe
    An, Huaming
    Fan, Yuqing
    Wang, Ya
    APPLIED SCIENCES-BASEL, 2021, 11 (22):
  • [46] Experimental and analytical study of the flexural behavior of basalt fiber-reinforced concrete beams
    Li, Zhihua
    Ma, Chengfei
    Guo, Xuan
    STRUCTURAL CONCRETE, 2023, 24 (02) : 2342 - 2362
  • [47] Flexural Behavior of Basalt Fiber Reinforced Polymer Tube Confined Coconut Fiber Reinforced Concrete
    Lv, Yang
    Wu, Xueqian
    Gao, Mengran
    Chen, Jiaxin
    Zhu, Yuhao
    Cheng, Quanxi
    Chen, Yu
    ADVANCES IN MATERIALS SCIENCE AND ENGINEERING, 2019, 2019
  • [48] Experimental study on the triaxial compression mechanical performance of basalt fiber-reinforced recycled aggregate concrete after exposure to high temperature
    Zhang, Xianggang
    Shen, Youchuan
    Fan, Yuhui
    Gao, Xiang
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2024, 20
  • [49] Strength indices and conversion relations for basalt fiber-reinforced recycled aggregate concrete
    Zhang, Xianggang
    Kuang, Xiaomei
    Wang, Fang
    Wang, Shuren
    DYNA, 2019, 94 (01): : 82 - 87
  • [50] Experimental study on compression failure characteristics of basalt fiber-reinforced lightweight aggregate concrete: Influences of strain rate and structural size
    Yu, Wenxuan
    Jin, Liu
    Du, Xiuli
    CEMENT & CONCRETE COMPOSITES, 2023, 138