DNA-Functionalized Plasmonic Nanomaterials for Optical Biosensing

被引:35
|
作者
Tian, Yuanyuan [1 ,2 ,3 ]
Zhang, Lei [1 ,2 ]
Wang, Lianhui [1 ,2 ]
机构
[1] Nanjing Univ Posts & Telecommun, Natl Jiangsu Synerget Innovat Ctr Adv Mat SICAM, Key Lab Organ Elect & Informat Displays, 9 Wenyuan Rd, Nanjing 210023, Jiangsu, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Natl Jiangsu Synerget Innovat Ctr Adv Mat SICAM, IAM, 9 Wenyuan Rd, Nanjing 210023, Jiangsu, Peoples R China
[3] Nanjing Agr Univ, Weed Res Lab, Nanjing 210095, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
biosensing; DNA-functionalized; nanomaterials; optical; plasmonic; UNMODIFIED GOLD NANOPARTICLES; ENHANCED RAMAN-SCATTERING; MESSENGER-RNA DETECTION; COLORIMETRIC DETECTION; TELOMERASE ACTIVITY; FRET NANOFLARES; LIVING CELLS; NUCLEIC-ACID; SINGLE GOLD; FOLDING DNA;
D O I
10.1002/biot.201800741
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Plasmonic nanomaterials, especially Au and Ag nanomaterials, have shown attractive physicochemical properties, such as easy functionalization and tunable optical bands. The development of this active subfield paves the way to the fascinating biosensing platforms. In recent years, plasmonic nanomaterials-based sensors have been extensively investigated because they are useful for genetic diseases, biological processes, devices, and cell imaging. In this account, a brief introduction of the development of optical biosensors based on DNA-functionalized plasmonic nanomaterials is presented. Then the common strategies for the application of the optical sensors are summarized, including colorimetry, fluorescence, localized surface plasmon resonance, and surface-enhanced resonance scattering detection. The focus is on the fundamental aspect of detection methods, and then a few examples of each method are highlighted. Finally, the opportunities and challenges for the plasmonic nanomaterials-based biosensing are discussed with the development of modern technologies.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Control of DNA-functionalized nanoparticle assembly
    De La Cruz, Monica Olvera
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [22] DNA-functionalized anisotropic particle assembly
    De La Cruz, Monica Olvera
    Girard, Martin
    Millan, Jaime
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [23] Anisotropically DNA-functionalized nanoparticle dimers
    Hogberg, B.
    Olin, H.
    EUROPEAN PHYSICAL JOURNAL D, 2007, 43 (1-3): : 299 - 302
  • [24] Plasmonic nanoparticles for optical biosensing
    Csaki, A.
    Schroeder, K.
    Willsch, R.
    Bartelt, H.
    Fritzsche, W.
    OPTICAL SENSORS 2011 AND PHOTONIC CRYSTAL FIBERS V, 2011, 8073
  • [25] DNA Nanostructures and DNA-Functionalized Nanoparticles for Cancer Theranostics
    Nicolson, Fay
    Ali, Akbar
    Kircher, Moritz F.
    Pal, Suchetan
    ADVANCED SCIENCE, 2020, 7 (23)
  • [26] Barcoding Biological Reactions with DNA-Functionalized Vesicles
    Peruzzi, Justin A.
    Jacobs, Miranda L.
    Vu, Timothy Q.
    Wang, Kenneth S.
    Kamat, Neha P.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (51) : 18683 - 18690
  • [27] DNA-functionalized nanopores for single molecule analysis
    Mussi, Valentina
    Fanzio, Paola
    Repetto, Luca
    Firpo, Giuseppe
    Valbusa, Ugo
    Stigliani, Sara
    Scaruffi, Paola
    Tonini, GianPaolo
    2009 9TH IEEE CONFERENCE ON NANOTECHNOLOGY (IEEE-NANO), 2009, : 682 - 684
  • [28] Specific interaction of DNA-functionalized polymer colloids
    Chollakup, Rungsima
    Smitthipong, Wirasak
    Chworos, Arkadiusz
    POLYMER CHEMISTRY, 2010, 1 (05) : 658 - 662
  • [29] Fabrication and characterization of DNA-functionalized GaN nanowires
    Simpkins, B. S.
    Mccoy, K. M.
    Whitman, L. J.
    Pehrsson, P. E.
    NANOTECHNOLOGY, 2007, 18 (35)
  • [30] Biosensing with Polymerase Chain Reaction-Stable DNA-Functionalized Magnetically Susceptible Carbon-Iron Microparticles
    Koirala, Dipak
    Dalbec, Forrest
    May, Jeremy
    Hamal, Kailash
    Allen, Peter B.
    Cheng, I. Francis
    ANALYTICAL CHEMISTRY, 2023, 95 (45) : 16631 - 16638