LQR-trees: Feedback Motion Planning via Sums-of-Squares Verification

被引:270
作者
Tedrake, Russ [1 ]
Manchester, Ian R. [1 ]
Tobenkin, Mark [1 ]
Roberts, John W. [1 ]
机构
[1] MIT, Comp Sci & Artificial Intelligence Lab, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
randomized motion planning; Lyapunov verification; trajectory libraries; LYAPUNOV FUNCTIONS; SYSTEMS;
D O I
10.1177/0278364910369189
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Advances in the direct computation of Lyapunov functions using convex optimization make it possible to efficiently evaluate regions of attraction for smooth non-linear systems. Here we present a feedback motion-planning algorithm which uses rigorously computed stability regions to build a sparse tree of LQR-stabilized trajectories. The region of attraction of this non-linear feedback policy "probabilistically covers" the entire controllable subset of state space, verifying that all initial conditions that are capable of reaching the goal will reach the goal. We numerically investigate the properties of this systematic non-linear feedback design algorithm on simple non-linear systems, prove the property of probabilistic coverage, and discuss extensions and implementation details of the basic algorithm.
引用
收藏
页码:1038 / 1052
页数:15
相关论文
共 37 条
  • [1] Anderson B.D., 2007, OPTIMAL CONTROL LINE
  • [2] [Anonymous], 2006, Planning algorithms
  • [3] [Anonymous], P 41 IEEE C DEC CONT
  • [4] [Anonymous], 2002, NONLINEAR SYSTEMS
  • [5] [Anonymous], 2000, P WORKSH ALG FDN ROB
  • [6] ATKESON CG, 2008, ADV NEURAL INFORM PR, V20, P33
  • [7] Betts J.T., 2001, Advances in Design and Control
  • [8] BRANICKY M, 2002, P INT S MATH THEOR N
  • [9] Sequential composition of dynamically dexterous robot behaviors
    Burridge, RR
    Rizzi, AA
    Koditschek, DE
    [J]. INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 1999, 18 (06) : 534 - 555
  • [10] Estimating the domain of attraction for non-polynomial systems via LMI optimizations
    Chesi, Graziano
    [J]. AUTOMATICA, 2009, 45 (06) : 1536 - 1541