Taxonomically Informed Scoring Enhances Confidence in Natural Products Annotation

被引:92
作者
Rutz, Adriano [1 ]
Dounoue-Kubo, Miwa [1 ,2 ]
Ollivier, Simon [1 ]
Bisson, Jonathan [3 ,4 ]
Bagheri, Mohsen [1 ,5 ]
Saesong, Tongchai [6 ,7 ]
Ebrahimi, Samad Nejad [5 ]
Ingkaninan, Kornkanok [6 ,7 ]
Wolfender, Jean-Luc [1 ]
Allard, Pierre-Marie [1 ]
机构
[1] Univ Geneva, Inst Pharmaceut Sci Western Switzerland ISPSO, CMU, Geneva, Switzerland
[2] Tokushima Bunri Univ, Fac Pharmaceut Sci, Tokushima, Japan
[3] Univ Illinois, Ctr Nat Prod Technol, PCRPS, Chicago, IL USA
[4] Univ Illinois, Dept Pharmaceut Sci, Coll Pharm, Chicago, IL USA
[5] Shahid Beheshti Univ, Dept Phytochem, Med Plants & Drugs Res Inst, Tehran, Iran
[6] Naresuan Univ, Dept Pharmaceut Chem & Pharmacognosy, Fac Pharmaceut Sci, Phitsanulok, Thailand
[7] Naresuan Univ, Ctr Excellence Innovat Chem, Phitsanulok, Thailand
关键词
metabolite annotation; chemotaxonomy; scoring system; natural products; computational metabolomics; taxonomic distance; specialized metabolome; MS/MS FRAGMENTATION; MASS-SPECTROMETRY;
D O I
10.3389/fpls.2019.01329
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Mass spectrometry (MS) offers unrivalled sensitivity for the metabolite profiling of complex biological matrices encountered in natural products (NP) research. The massive and complex sets of spectral data generated by such platforms require computational approaches for their interpretation. Within such approaches, computational metabolite annotation automatically links spectral data to candidate structures via a score, which is usually established between the acquired data and experimental or theoretical spectral databases (DB). This process leads to various candidate structures for each MS features. However, at this stage, obtaining high annotation confidence level remains a challenge notably due to the extensive chemodiversity of specialized metabolomes. The design of a metascore is a way to capture complementary experimental attributes and improve the annotation process. Here, we show that integrating the taxonomic position of the biological source of the analyzed samples and candidate structures enhances confidence in metabolite annotation. A script is proposed to automatically input such information at various granularity levels (species, genus, and family) and complement the score obtained between experimental spectral data and output of available computational metabolite annotation tools (ISDB-DNP, MS-Finder, Sirius). In all cases, the consideration of the taxonomic distance allowed an efficient re-ranking of the candidate structures leading to a systematic enhancement of the recall and precision rates of the tools (1.5- to 7-fold increase in the F1 score). Our results clearly demonstrate the importance of considering taxonomic information in the process of specialized metabolites annotation. This requires to access structural data systematically documented with biological origin, both for new and previously reported NPs. In this respect, the establishment of an open structural DB of specialized metabolites and their associated metadata, particularly biological sources, is timely and critical for the NP research community.
引用
收藏
页数:15
相关论文
共 38 条
[1]   India needs more plant taxonomists [J].
Ali, M. Ajmal ;
Choudhary, R. K. .
NATURE, 2011, 471 (7336) :37-37
[2]   Deep metabolome annotation in natural products research: towards a virtuous cycle in metabolite identification [J].
Allard, Pierre-Marie ;
Genta-Jouve, Gregory ;
Wolfender, Jean-Luc .
CURRENT OPINION IN CHEMICAL BIOLOGY, 2017, 36 :40-49
[3]   Integration of Molecular Networking and In-Silico MS/MS Fragmentation for Natural Products Dereplication [J].
Allard, Pierre-Marie ;
Peresse, Tiphaine ;
Bisson, Jonathan ;
Gindro, Katia ;
Marcourt, Laurence ;
Van Cuong Pham ;
Roussi, Fanny ;
Litaudon, Marc ;
Wolfender, Jean-Luc .
ANALYTICAL CHEMISTRY, 2016, 88 (06) :3317-3323
[4]   Competitive fragmentation modeling of ESI-MS/MS spectra for putative metabolite identification [J].
Allen, Felicity ;
Greiner, Russ ;
Wishart, David .
METABOLOMICS, 2015, 11 (01) :98-110
[5]   CFM-ID: a web server for annotation, spectrum prediction and metabolite identification from tandem mass spectra [J].
Allen, Felicity ;
Pon, Allison ;
Wilson, Michael ;
Greiner, Russ ;
Wishart, David .
NUCLEIC ACIDS RESEARCH, 2014, 42 (W1) :W94-W99
[6]   Liquid-chromatography retention order prediction for metabolite identification [J].
Bach, Eric ;
Szedmak, Sandor ;
Brouard, Celine ;
Boecker, Sebastian ;
Rousu, Juho .
BIOINFORMATICS, 2018, 34 (17) :875-883
[7]   How to Compute Electron Ionization Mass Spectra from First Principles [J].
Bauer, Christoph Alexander ;
Grimme, Stefan .
JOURNAL OF PHYSICAL CHEMISTRY A, 2016, 120 (21) :3755-3766
[8]   SIRIUS: decomposing isotope patterns for metabolite identification [J].
Boecker, Sebastian ;
Letzel, Matthias C. ;
Liptak, Zsuzsanna ;
Pervukhin, Anton .
BIOINFORMATICS, 2009, 25 (02) :218-224
[9]   An integrative omics perspective for the analysis of chemical signals in ecological interactions [J].
Brunetti, A. E. ;
Carnevale Neto, F. ;
Vera, M. C. ;
Taboada, C. ;
Pavarini, D. P. ;
Bauermeister, A. ;
Lopes, N. P. .
CHEMICAL SOCIETY REVIEWS, 2018, 47 (05) :1574-1591
[10]   A cross-platform toolkit for mass spectrometry and proteomics [J].
Chambers, Matthew C. ;
Maclean, Brendan ;
Burke, Robert ;
Amodei, Dario ;
Ruderman, Daniel L. ;
Neumann, Steffen ;
Gatto, Laurent ;
Fischer, Bernd ;
Pratt, Brian ;
Egertson, Jarrett ;
Hoff, Katherine ;
Kessner, Darren ;
Tasman, Natalie ;
Shulman, Nicholas ;
Frewen, Barbara ;
Baker, Tahmina A. ;
Brusniak, Mi-Youn ;
Paulse, Christopher ;
Creasy, David ;
Flashner, Lisa ;
Kani, Kian ;
Moulding, Chris ;
Seymour, Sean L. ;
Nuwaysir, Lydia M. ;
Lefebvre, Brent ;
Kuhlmann, Frank ;
Roark, Joe ;
Rainer, Paape ;
Detlev, Suckau ;
Hemenway, Tina ;
Huhmer, Andreas ;
Langridge, James ;
Connolly, Brian ;
Chadick, Trey ;
Holly, Krisztina ;
Eckels, Josh ;
Deutsch, Eric W. ;
Moritz, Robert L. ;
Katz, Jonathan E. ;
Agus, David B. ;
MacCoss, Michael ;
Tabb, David L. ;
Mallick, Parag .
NATURE BIOTECHNOLOGY, 2012, 30 (10) :918-920