Numerical modelling of CFRP induction heating using temperature-dependent material properties

被引:29
作者
Lundstrom, Fredrik [1 ]
Frogner, Kenneth [1 ,2 ]
Andersson, Mats [1 ]
机构
[1] Lund Univ, Div Prod & Mat Engn, Ole Romers Vag 1, SE-22363 Lund, Sweden
[2] Corebon AB, Kantyxegatan 5, SE-21376 Malmo, Sweden
关键词
A; Carbon fibre; B; Thermal properties; Electrical properties; C; Finite element analysis (FEA); Induction heating; TRANSFER COEFFICIENT; FIBER; COMPOSITES; FIELD;
D O I
10.1016/j.compositesb.2021.108982
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Induction heating of CFRP is an energy-efficient and fast method that may be used for example during consolidation of thermoset-based CFRP or welding of thermoplastic-based CFRP. This study investigates how induction heating of CFRP is affected by the temperature dependence of the thermal and electrical properties and presents a simple numerical model for computation of the temperature distribution during induction heating with a circular coil. Temperature-dependent electrical and thermal properties are measured on a macroscopic level and used in the numerical model. Thermographic recordings are made during induction heating to validate the results from the numerical model. The result shows the importance of using temperature-dependent thermal properties in the numerical model, while it might not be necessary to use temperature-dependent electrical conductivity because of the small impact on the computed heat generation and temperature.
引用
收藏
页数:12
相关论文
共 50 条
[41]   Surface absorption illumination in a generalized thermoelastic layer under temperature-dependent properties using MGL model [J].
Tayel, I. M. ;
Mohammed, M. .
WAVES IN RANDOM AND COMPLEX MEDIA, 2021, :3237-3260
[42]   Temperature-Dependent Properties of Co-evaporated CuS Thin Films [J].
T. Srinivasa Reddy ;
M. C. Santhosh Kumar .
Brazilian Journal of Physics, 2021, 51 :1575-1583
[43]   Temperature-Dependent Properties of Co-evaporated CuS Thin Films [J].
Reddy, T. Srinivasa ;
Kumar, M. C. Santhosh .
BRAZILIAN JOURNAL OF PHYSICS, 2021, 51 (06) :1575-1583
[44]   Temperature-Dependent Properties of Spray-Deposited ITO Thin Films [J].
Moholkar, A. V. ;
Pawar, S. M. ;
Rajpure, K. Y. ;
Patil, P. S. ;
Bhosale, C. H. ;
Kim, J. H. .
JOURNAL OF THERMAL SPRAY TECHNOLOGY, 2010, 19 (03) :531-540
[45]   Temperature-dependent mechanical properties of ZrC and HfC from first principles [J].
Zhang, Jin ;
McMahon, Jeffrey M. .
JOURNAL OF MATERIALS SCIENCE, 2021, 56 (06) :4266-4279
[46]   A Novel Method to Simultaneously Identify Temperature-Dependent Thermal Properties and Verification [J].
Pan, Weizhen ;
Yi, Fajun ;
Zhuo, Lijun ;
Meng, Songhe .
JOURNAL OF THERMAL SCIENCE AND ENGINEERING APPLICATIONS, 2020, 12 (04)
[47]   Temperature-Dependent Thermal Properties of Supported MoS2 Monolayers [J].
Taube, Andrzej ;
Judek, Jaroslaw ;
Lapiriska, Anna ;
Zdrojek, Mariusz .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (09) :5061-5065
[48]   Temperature-Dependent Electrical Properties of Sn-Doped ZnO Nanowires [J].
Al-Heniti, S. ;
Badran, R. I. ;
Umar, Ahmad .
SCIENCE OF ADVANCED MATERIALS, 2015, 7 (12) :2684-2691
[49]   Temperature-dependent mechanical properties of defective graphene reinforced polymer nanocomposite [J].
Sun, Rui ;
Li, Lili ;
Zhao, Shaoyu ;
Feng, Chuang ;
Kitipornchai, Sritawat ;
Yang, Jie .
MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2021, 28 (10) :1010-1019
[50]   Effect of Temperature Dependence of Magnetic Properties on Heating Characteristics of Induction Heater [J].
Kagimoto, Hiroyuki ;
Miyagi, Daisuke ;
Takahashi, Norio ;
Uchida, Naoki ;
Kawanaka, Keiji .
IEEE TRANSACTIONS ON MAGNETICS, 2010, 46 (08) :3018-3021