Artificial neural networks in materials science application

被引:4
作者
Yu, Zhang Wen [1 ]
机构
[1] Luoyang Ship Mat Res Inst, Luoyang, Peoples R China
来源
INFORMATION TECHNOLOGY FOR MANUFACTURING SYSTEMS, PTS 1 AND 2 | 2010年
关键词
artificial neural networks; materials science; Application; CORROSION; PREDICTION; STEEL;
D O I
10.4028/www.scientific.net/AMM.20-23.1211
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Because but the artificial neural networks has the strong non-linear problem handling ability also the fault tolerance strong obtains the widespread application in the materials science. This article to its material design, the material preparation craft optimizes, the plastic processing, the heat treatment, the compound materials, corrode, domain and so on casting applications have carried on the discussion.
引用
收藏
页码:1211 / 1216
页数:6
相关论文
共 22 条
  • [1] CUIDAWEI, 2004, CHINA CORRODES PROTE, V24, P29
  • [2] DONGMIN, 2000, LIAONING NORMAL TRAI, V2, P100
  • [3] FANXINMIN, 2002, MAT GUIDE J, V16, P28
  • [4] GEJIANHUA, 2003, MODERN CHEM IND, V23, P59
  • [5] GUZHENGBIN, 2003, J ASTRONAUTIC METROL, V23, P13
  • [6] Prediction of corrosion-fatigue behavior of DP steel through artificial neural network
    Haque, ME
    Sudhakar, KV
    [J]. INTERNATIONAL JOURNAL OF FATIGUE, 2001, 23 (01) : 1 - 4
  • [7] HOUZHEZHE, 2003, HEBEI IND U J, V32, P94
  • [8] Predictive models for determination of pitting corrosion versus inhibitor concentrations and temperature for radioactive sludge in carbon steel waste tanks
    Leifer, J
    Zapp, PE
    Mickalonis, JI
    [J]. CORROSION, 1999, 55 (01) : 31 - 37
  • [9] Microstructural evolution and modelling of the hot compression of a TC6 titanium alloy
    Li, MQ
    Xiong, AM
    Huang, WC
    Wang, HR
    Su, SB
    Shen, LC
    [J]. MATERIALS CHARACTERIZATION, 2002, 49 (03) : 203 - 209
  • [10] LIOUJIA, 2004, CAST, V53, P18