Effects of post-deposition annealing of cerium oxide passivation layer in nitrogen-oxygen-nitrogen ambient

被引:17
作者
Abdul Shekkeer, Kammutty Musliyarakath [1 ]
Cheong, Kuan Yew [2 ]
Quah, Hock Jin [1 ]
机构
[1] Univ Sains Malaysia, Inst Nano Optoelect Res & Technol INOR, Gelugor 11800, Penang, Malaysia
[2] Univ Sains Malaysia, Sch Mat & Mineral Resources Engn, Gelugor, Penang, Malaysia
关键词
capacitor; cerium oxide; energy efficient; metal-oxide-semiconductor; nitrogen; oxygen; passivation layer; ZRO2; THIN-FILMS; HIGH-K ZRO2; SOL-GEL; ELECTRICAL CHARACTERISTICS; OPTICAL-PROPERTIES; GATE DIELECTRICS; CEO2; MICROSTRUCTURE; SILICON; DEPOSITION;
D O I
10.1002/er.8184
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Effects of post-deposition annealing temperature (400 degrees C, 600 degrees C, 800 degrees C and 1000 degrees C) onto metal-organic decomposed cerium oxide (CeO2) precursor spin-coated on n-type Si substrate was carried out in nitrogen-oxygen-nitrogen ambient. The capability of nitrogen to inhibit further oxidation of the Si surface by attaching to the oxygen vacancies sites was reported. Excessive formation of SiO2 interfacial layer however occurred at 1000 degrees C, surpassing the thickness of the CeO2 passivation layer, leaving behind nitrogen dangling bonds that were inefficient in restricting further oxidation of the Si surface, and hence a permanent dielectric breakdown happened at an electric field of 0.98 MV/cm. The CeO2 passivation layer annealed at 800 degrees C broke down at 4.85 MV/cm and possessed relatively low D-it, Q(eff), and slow trap density with negligible formation of interfacial layer, which promoted its use as a promising high k passivation layer.
引用
收藏
页码:14814 / 14826
页数:13
相关论文
共 63 条
  • [1] Ali MM., 2018, AIP CONF P, V1953
  • [2] Oxygen vacancy-induced microstructural changes of annealed CeO2-x nanocrystals
    Askrabic, S.
    Dohcevic-Mitrovic, Z.
    Kremenovic, A.
    Lazarevic, N.
    Kahlenberg, V.
    Popovic, Z. V.
    [J]. JOURNAL OF RAMAN SPECTROSCOPY, 2012, 43 (01) : 76 - 81
  • [3] Microstructure, optical and dielectric properties of cerium oxide thin films prepared by pulsed laser deposition
    Balakrishnan, G.
    Panda, Arun Kumar
    Raghavan, C. M.
    Singh, Akash
    Prabhakar, M. N.
    Mohandas, E.
    Kuppusami, P.
    Song, Jung il
    [J]. JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2019, 30 (17) : 16548 - 16553
  • [4] Structural and Optical Properties of CeO2 Nanoparticles Synthesized by Modified Polymer Complex Method
    Calvache-Munoz, Jazmin
    Prado, Fabiola A.
    Tirado, Liliana
    Daza-Gomez, Lucy Caterine
    Cuervo-Ochoa, German
    Calambas, Heidy L.
    Rodriguez-Paez, Jorge E.
    [J]. JOURNAL OF INORGANIC AND ORGANOMETALLIC POLYMERS AND MATERIALS, 2019, 29 (03) : 813 - 826
  • [5] Interband transitions in sol-gel-derived ZrO2 films under different calcination conditions
    Chang, Sue-min
    Doong, Ruey-an
    [J]. CHEMISTRY OF MATERIALS, 2007, 19 (19) : 4804 - 4810
  • [6] Development of hafnium based high-k materials-A review
    Choi, J. H.
    Mao, Y.
    Chang, J. P.
    [J]. MATERIALS SCIENCE & ENGINEERING R-REPORTS, 2011, 72 (06) : 97 - 136
  • [7] Structural and electrical quality of the high-k dielectric Y2O3 on Si (001):: Dependence on growth parameters
    Dimoulas, A
    Vellianitis, G
    Travlos, A
    Ioannou-Sougleridis, V
    Nassiopoulou, AG
    [J]. JOURNAL OF APPLIED PHYSICS, 2002, 92 (01) : 426 - 431
  • [8] Electrical characterization of thin Al2O3 films grown by atomic layer deposition on silicon and various metal substrates
    Groner, MD
    Elam, JW
    Fabreguette, FH
    George, SM
    [J]. THIN SOLID FILMS, 2002, 413 (1-2) : 186 - 197
  • [9] Grunthaner F. J., 1986, Material Science Reports, V1, P65, DOI 10.1016/S0920-2307(86)80001-9
  • [10] Modulation of the microstructure, optical and electrical properties of sputtering-driven Yb2O3 gate dielectrics by sputtering power and annealing treatment
    Hao, Lin
    He, Gang
    Fang, Zebo
    Wang, Die
    Sun, Zhaoqi
    Liu, Yanmei
    [J]. APPLIED SURFACE SCIENCE, 2020, 508