A simple one-dimensional map-based model of spiking neurons with wide ranges of firing rates and complexities

被引:5
作者
Bahramian, Alireza [1 ]
Ramadoss, Janarthanan [2 ]
Nazarimehr, Fahimeh [1 ]
Rajagopal, Karthikeyan [3 ]
Jafari, Sajad [1 ,4 ]
Hussain, Iqtadar [5 ]
机构
[1] Amirkabir Univ Technol, Dept Biomed Engn, Tehran Polytech, Tehran, Iran
[2] Chennai Inst Technol, Ctr Artificial Intelligence, Chennai, Tamil Nadu, India
[3] Chennai Inst Technol, Ctr Nonlinear Syst, Chennai, Tamil Nadu, India
[4] Amirkabir Univ Technol, Hlth Technol Res Inst, Tehran Polytech, Tehran, Iran
[5] Qatar Univ, Coll Arts & Sci, Dept Math Stat & Phys, Math Program, Doha 2713, Qatar
关键词
Neuron model; Map; Spike; Firing rate; Complexity; SINGLE-NEURON; NETWORK; DYNAMICS; NERVE; SYNCHRONIZATION; OSCILLATIONS; POPULATIONS; REDUCTION; FEATURES; ENTROPY;
D O I
10.1016/j.jtbi.2022.111062
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper introduces a simple 1-dimensional map-based model of spiking neurons. During the past decades, dynamical models of neurons have been used to investigate the biology of human nervous systems. The models simulate experimental records of neurons' voltages using difference or differential equations. Difference neuronal models have some advantages besides the differential ones. They are usually simpler, and considering the cost of needed computations, they are more efficient. In this paper, a simple 1 dimensional map-based model of spiking neurons is introduced. Sample entropy is applied to analyze the complexity of the model's dynamics. The model can generate a wide range of time series with different firing rates and different levels of complexities. Besides, using some tools like bifurcation diagrams and cobwebs, the introduced model is analyzed.(c) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:8
相关论文
共 74 条
[1]   On numerical approximations of fractional-order spiking neuron models [J].
AbdelAty, A. M. ;
Fouda, M. E. ;
Eltawil, A. M. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2022, 105
[2]   Computation in a single neuron: Hodgkin and Huxley revisited [J].
Arcas, BAY ;
Fairhall, AL ;
Bialek, W .
NEURAL COMPUTATION, 2003, 15 (08) :1715-1749
[3]   Extracting non-linear integrate-and-fire models from experimental data using dynamic I-V curves [J].
Badel, Laurent ;
Lefort, Sandrine ;
Berger, Thomas K. ;
Petersen, Carl C. H. ;
Gerstner, Wulfram ;
Richardson, Magnus J. E. .
BIOLOGICAL CYBERNETICS, 2008, 99 (4-5) :361-370
[4]   A multiscale continuum model of the vertebrate outer retina: The temporal dynamics of background-induced flicker enhancement [J].
Baer, Steven M. ;
Chang, Shaojie ;
Crook, Sharon M. ;
Gardner, Carl L. ;
Jones, Jeremiah R. ;
Ringhofer, Christian ;
Nelson, Ralph F. .
JOURNAL OF THEORETICAL BIOLOGY, 2021, 525
[5]   Introducing a chaotic map with a wide range of long-term memory as a model of patch-clamped ion channels current time series [J].
Bahramian, Alireza ;
Nouri, Ali ;
Baghdadi, Golnaz ;
Gharibzadeh, Shahriar ;
Towhidkhah, Farzad ;
Jafari, Sajad .
CHAOS SOLITONS & FRACTALS, 2019, 126 :361-368
[6]   Global multistability and analog circuit implementation of an adapting synapse-based neuron model [J].
Bao, Bocheng ;
Zhu, Yongxin ;
Li, Chengqing ;
Bao, Han ;
Xu, Quan .
NONLINEAR DYNAMICS, 2020, 101 (02) :1105-1118
[7]  
Bao H., 2020, IEEE T CIRCUITS SYST
[8]   Memristor synapse-coupled memristive neuron network: synchronization transition and occurrence of chimera [J].
Bao, Han ;
Zhang, Yunzhen ;
Liu, Wenbo ;
Bao, Bocheng .
NONLINEAR DYNAMICS, 2020, 100 (01) :937-950
[9]   Hidden Bursting Firings and Bifurcation Mechanisms in Memristive Neuron Model With Threshold Electromagnetic Induction [J].
Bao, Han ;
Hu, Aihuang ;
Liu, Wenbo ;
Bao, Bocheng .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020, 31 (02) :502-511
[10]  
Batista AM, 2002, PHYS REV E, V65, DOI 10.1103/PhysRevE.65.056209