Controlling the threshold voltage of a semiconductor field-effect transistor by gating its graphene gate

被引:12
作者
Anzi, Luca [1 ]
Tuktamyshev, Artur [2 ]
Fedorov, Alexey [1 ,3 ]
Zurutuza, Amaia [4 ]
Sanguinetti, Stefano [2 ]
Sordan, Roman [1 ]
机构
[1] Politecn Milan, Dept Phys, L NESS, Via Anzani 42, I-22100 Como, Italy
[2] Univ Milano Bicocca, Dept Mat Sci, Via Cozzi 53, I-20125 Milan, Italy
[3] Politecn Milan, CNR IFN, Via Anzani 42, I-22100 Como, Italy
[4] Graphenea, Ave Tolosa 76, Donostia San Sebastian 20018, Spain
基金
欧盟地平线“2020”;
关键词
Threshold voltage;
D O I
10.1038/s41699-022-00302-y
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The threshold voltage of a field-effect transistor (FED determines its switching and limits the scaling of the supply voltage in the logic gates. Here we demonstrate a GaAs FET with a monolayer graphene gate in which the threshold voltage was externally controlled by an additional control gate. The graphene gate forms a Schottky junction with the transistor channel, modulating the channel conductivity. The control gate sets the work function of the graphene gate, controlling the Schottky barrier height and therefore the threshold voltage, and reduces the subthreshold swing down to similar to 60 mV dec(-1). The change of the threshold voltage was large enough to turn the initially depletion mode FETs into the enhancement mode FETs. This allowed to realize logic gates with a positive switching threshold in which the threshold voltage of each transistor was independently set. The presented FETs can also be operated as dual-gate FETs, which was demonstrated by realizing frequency mixers.
引用
收藏
页数:7
相关论文
共 35 条
[21]   Quantum Carrier Reinvestment-Induced Ultrahigh and Broadband Photocurrent Responses in Graphene - Silicon junctions [J].
Liu, Fangze ;
Kar, Swastik .
ACS NANO, 2014, 8 (10) :10270-10279
[22]   A graphene-based broadband optical modulator [J].
Liu, Ming ;
Yin, Xiaobo ;
Ulin-Avila, Erick ;
Geng, Baisong ;
Zentgraf, Thomas ;
Ju, Long ;
Wang, Feng ;
Zhang, Xiang .
NATURE, 2011, 474 (7349) :64-67
[23]   Graphene FETs for Zero-Bias Linear Resistive FET Mixers [J].
Moon, J. S. ;
Seo, H-C. ;
Antcliffe, M. ;
Le, D. ;
McGuire, C. ;
Schmitz, A. ;
Nyakiti, L. O. ;
Gaskill, D. K. ;
Campbell, P. M. ;
Lee, K-M. ;
Asbeck, P. .
IEEE ELECTRON DEVICE LETTERS, 2013, 34 (03) :465-467
[24]   Modulation of Schottky barrier height in graphene/MoS2/metal vertical heterostructure with large current ON-OFF ratio [J].
Sata, Yohta ;
Moriya, Rai ;
Yamaguchi, Takehiro ;
Inoue, Yoshihisa ;
Morikawa, Sei ;
Yabuki, Naoto ;
Masubuchi, Satoru ;
Machida, Tomoki .
JAPANESE JOURNAL OF APPLIED PHYSICS, 2015, 54 (04)
[25]   Tunable Reverse-Biased Graphene/Silicon Heterojunction Schottky Diode Sensor [J].
Singh, Amol ;
Uddin, Md. Ahsan ;
Sudarshan, Tangali ;
Koley, Goutam .
SMALL, 2014, 10 (08) :1555-1565
[26]   Ideal Graphene/Silicon Schottky Junction Diodes [J].
Sinha, Dhiraj ;
Lee, Ji Ung .
NANO LETTERS, 2014, 14 (08) :4660-4664
[27]   Role of Interfacial Oxide in High-Efficiency Graphene-Silicon Schottky Barrier Solar Cells [J].
Song, Yi ;
Li, Xinming ;
Mackin, Charles ;
Zhang, Xu ;
Fang, Wenjing ;
Palacios, Tomas ;
Zhu, Hongwei ;
Kong, Jing .
NANO LETTERS, 2015, 15 (03) :2104-2110
[28]  
Sze S. M., 2021, PHYS SEMICONDUCTOR D
[29]   Rectification at Graphene-Semiconductor Interfaces: Zero-Gap Semiconductor-Based Diodes [J].
Tongay, S. ;
Lemaitre, M. ;
Miao, X. ;
Gila, B. ;
Appleton, B. R. ;
Hebard, A. F. .
PHYSICAL REVIEW X, 2012, 2 (01) :1-10
[30]  
Tyagi S, 2005, INT EL DEVICES MEET, P1070