A STATIC PDE APPROACH FOR MULTIDIMENSIONAL EXTRAPOLATION USING FAST SWEEPING METHODS

被引:18
作者
Aslam, Tariq [1 ]
Luo, Songting [2 ]
Zhao, Hongkai [3 ]
机构
[1] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[2] Iowa State Univ, Dept Math, Ames, IA 50011 USA
[3] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
关键词
static PDE; multidimensional extrapolation; fast sweeping method; LEVEL SET METHOD; EQUATIONS; FLOWS;
D O I
10.1137/140956919
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A static partial differential equation (PDE) approach is presented for multidimensional extrapolation under the assumption that a level set function exists which separates the region of known values from the region to be extrapolated. Arbitrary orders of polynomial extrapolation can be obtained through solutions of a series of static linear PDEs. Fast sweeping methods of first and second orders are presented to solve the PDEs for constant, linear, and quadratic extrapolation. Numerical examples are presented to demonstrate the approach.
引用
收藏
页码:A2907 / A2928
页数:22
相关论文
共 27 条