Satellite L-band vegetation optical depth is directly proportional to crop water in the US Corn Belt

被引:31
作者
Togliatti, Kaitlin [1 ]
Hartman, Theodore [1 ]
Walker, Victoria A. [1 ]
Arkebauer, Timothy J. [2 ]
Suyker, Andrew E. [2 ]
VanLoocke, Andy [1 ]
Hornbuckle, Brian K. [1 ]
机构
[1] Iowa State Univ, Dept Agron, Ames, IA 50011 USA
[2] Univ Nebraska, Sch Nat Resources, Lincoln, NE USA
关键词
SMAP; SMOS; Agro-IBIS; Vegetation gravimetric water content; VOD; SOIL-MOISTURE PRODUCTS; MICROWAVE EMISSION; LAND-SURFACE; 1.4; GHZ; SMOS; CLASSIFICATION; PERFORMANCE; SYSTEM; YIELD; MODEL;
D O I
10.1016/j.rse.2019.111378
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
NASA's Soil Moisture Active Passive (SMAP) and ESA's Soil Moisture Ocean Salinity (SMOS) carry satellite L-band radiometers whose primary missions are to measure soil moisture. However, they also allow retrieving of vegetation optical depth (VOD), the degree to which vegetation attenuates microwave radiation. Because attenuation is primarily a function of the total amount of liquid water in a vegetation canopy that is contained within vegetation tissue, VOD could be used to monitor seasonal changes in this quantity, which we call crop water, in major agricultural regions such as the US Corn Belt. There are two main advantages of L-band VOD: it observes the entire canopy volume because soil moisture sensitivity is maintained throughout the growing season; and since it is unaffected by cloud cover there are close to daily measurements. To show its value, we compare SMAP and SMOS VOD to satellite-scale estimates of crop productivity created using the Agricultural Integrated BIosphere Simulator (Agro-IBIS) and observed weather at the South Fork SMAP Core Validation Site in the Corn Belt state of Iowa. We find that SMAP and SMOS VOD are directly proportional to crop water. New empirical models that relate crop water to crop dry mass were required to make this finding. We created these models with in situ data spanning multiple years and stages of crop development. The value of the proportionality constant (or "b-parameter") relating VOD to crop water at the satellite scale is about half as large as previous estimates. Because L-band VOD is directly proportional to crop water at the satellite scale, and because we understand the relationship between crop water and crop dry mass, SMAP and SMOS have the potential to evaluate the large-scale performance of crop models in the Corn Belt on a near daily basis.
引用
收藏
页数:11
相关论文
共 50 条
[1]  
Abendroth L. J., 2011, 1009 PMR IOW STAT U
[2]   Evaluation of SMOS Soil Moisture Products Over Continental US Using the SCAN/SNOTEL Network [J].
Al Bitar, Ahmad ;
Leroux, Delphine ;
Kerr, Yann H. ;
Merlin, Olivier ;
Richaume, Philippe ;
Sahoo, Alok ;
Wood, Eric F. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2012, 50 (05) :1572-1586
[3]   Use of Landsat thermal imagery in monitoring evapotranspiration and managing water resources [J].
Anderson, Martha C. ;
Allen, Richard G. ;
Morse, Anthony ;
Kustas, William P. .
REMOTE SENSING OF ENVIRONMENT, 2012, 122 :50-65
[4]   Advances in Remote Sensing of Agriculture: Context Description, Existing Operational Monitoring Systems and Major Information Needs [J].
Atzberger, Clement .
REMOTE SENSING, 2013, 5 (02) :949-981
[5]   The influence of land cover on surface energy partitioning and evaporative fraction regimes in the US Southern Great Plains [J].
Bagley, Justin E. ;
Kueppers, Lara M. ;
Billesbach, Dave P. ;
Williams, Ian N. ;
Biraud, Sebastien C. ;
Torn, Margaret S. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2017, 122 (11) :5793-5807
[6]   A high-performance and in-season classification system of field-level crop types using time-series Landsat data and a machine learning approach [J].
Cai, Yaping ;
Guan, Kaiyu ;
Peng, Jian ;
Wang, Shaowen ;
Seifert, Christopher ;
Wardlow, Brian ;
Li, Zhan .
REMOTE SENSING OF ENVIRONMENT, 2018, 210 :35-47
[7]   A Real-Time MODIS Vegetation Product for Land Surface and Numerical Weather Prediction Models [J].
Case, Jonathan L. ;
LaFontaine, Frank J. ;
Bell, Jordan R. ;
Jedlovec, Gary J. ;
Kumar, Sujay V. ;
Peters-Lidard, Christa D. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (03) :1772-1786
[8]   Development and assessment of the SMAP enhanced passive soil moisture product [J].
Chan, S. K. ;
Bindlish, R. ;
O'Neill, P. ;
Jackson, T. ;
Njoku, E. ;
Dunbar, S. ;
Chaubell, J. ;
Piepmeier, J. ;
Yueh, S. ;
Entekhabi, D. ;
Colliander, A. ;
Chen, F. ;
Cosh, M. H. ;
Caldwell, T. ;
Walker, J. ;
Berg, A. ;
McNairn, H. ;
Thibeault, M. ;
Martinez-Fernandez, J. ;
Uldall, F. ;
Seyfried, M. ;
Bosch, D. ;
Starks, P. ;
Collins, C. Holifield ;
Prueger, J. ;
van der Velde, R. ;
Asanuma, J. ;
Palecki, M. ;
Small, E. E. ;
Zreda, M. ;
Calvet, J. ;
Crow, W. T. ;
Kerr, Y. .
REMOTE SENSING OF ENVIRONMENT, 2018, 204 :931-941
[9]   L-band vegetation optical depth seasonal metrics for crop yield assessment [J].
Chaparro, David ;
Piles, Maria ;
Vall-Llossera, Merce ;
Camps, Adriano ;
Konings, Alexandra G. ;
Entekhabi, Dara .
REMOTE SENSING OF ENVIRONMENT, 2018, 212 :249-259
[10]   Validation of SMAP surface soil moisture products with core validation sites [J].
Colliander, A. ;
Jackson, T. J. ;
Bindlish, R. ;
Chan, S. ;
Das, N. ;
Kim, S. B. ;
Cosh, M. H. ;
Dunbar, R. S. ;
Dang, L. ;
Pashaian, L. ;
Asanuma, J. ;
Aida, K. ;
Berg, A. ;
Rowlandson, T. ;
Bosch, D. ;
Caldwell, T. ;
Caylor, K. ;
Goodrich, D. ;
al Jassar, H. ;
Lopez-Baeza, E. ;
Martinez-Fernandez, J. ;
Gonzalez-Zamora, A. ;
Livingston, S. ;
McNairn, H. ;
Pacheco, A. ;
Moghaddam, M. ;
Montzka, C. ;
Notarnicola, C. ;
Niedrist, G. ;
Pellarin, T. ;
Prueger, J. ;
Pulliainen, J. ;
Rautiainen, K. ;
Ramos, J. ;
Seyfried, M. ;
Starks, P. ;
Su, Z. ;
Zeng, Y. ;
van der Velde, R. ;
Thibeault, M. ;
Dorigo, W. ;
Vreugdenhil, M. ;
Walker, J. P. ;
Wu, X. ;
Monerris, A. ;
O'Neill, P. E. ;
Entekhabi, D. ;
Njoku, E. G. ;
Yueh, S. .
REMOTE SENSING OF ENVIRONMENT, 2017, 191 :215-231