LIMIT CONDITIONAL DISTRIBUTIONS FOR BIVARIATE VECTORS WITH POLAR REPRESENTATION

被引:14
作者
Fougeres, Anne-Laure [1 ]
Soulier, Philippe [2 ]
机构
[1] Univ Lyon 1, CNRS, UMR5208, Inst Camille Jordan, F-69622 Villeurbanne, France
[2] Univ Paris Ouest Nanterre, Nanterre, France
关键词
Asymptotic independence; Conditional excess probability; Conditional extreme-value model; Elliptic distributions; Second-order correction; Gamma-varying tail;
D O I
10.1080/15326340903291362
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We investigate conditions for the existence of the limiting conditional distribution of a bivariate random vector when one component becomes large. We revisit the existing literature on the topic, and present some new sufficient conditions. We concentrate on the case where the conditioning variable belongs to the maximum domain of attraction of the Gumbel law, and we study geometric conditions on the joint distribution of the vector. We show that these conditions are of a local nature and imply asymptotic independence when both variables belong to the domain of attraction of an extreme value distribution. The new model we introduce can also be useful to simulate bivariate random vectors with a given limiting conditional distribution.
引用
收藏
页码:54 / 77
页数:24
相关论文
共 22 条
[1]  
ABDOUS B, 2005, REV CANADIENNE STAT, V33, P1095
[2]   Estimation of bivariate excess probabilities for elliptical models [J].
Abdous, Belkacem ;
Fougeres, Anne-Laure ;
Ghoudi, Kilani ;
Soulier, Philippe .
BERNOULLI, 2008, 14 (04) :1065-1088
[3]  
Balkema G, 2007, ZUR LECT ADV MATH, P1
[4]  
Berman S. M., 1983, STOCH PROC APPL, V15, P213
[5]  
Berman S. M., 1992, The Wadsworth & Brooks/Cole Statistics/Probability Series
[6]  
Bingham N. H., 1989, Encyclopedia of Mathematics and its Applications
[7]   ON SOME LIMIT THEOREMS SIMILAR TO ARC-SIN LAW [J].
BREIMAN, L .
THEORY OF PROBILITY AND ITS APPLICATIONS,USSR, 1965, 10 (02) :323-&
[8]   SUBEXPONENTIALITY OF THE PRODUCT OF INDEPENDENT RANDOM-VARIABLES [J].
CLINE, DBH ;
SAMORODNITSKY, E .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1994, 49 (01) :75-98
[9]  
DAS B, 2008, CONDITIONING EXTREME
[10]   Detecting a conditional extreme value model [J].
Das, Bikramjit ;
Resnick, Sidney I. .
EXTREMES, 2011, 14 (01) :29-61