MRI brain extraction with combined expectation maximization and geodesic active contours
被引:13
作者:
Huang, Albert
论文数: 0引用数: 0
h-index: 0
机构:
Univ British Columbia, Dept Elect & Comp Engn, Vancouver, BC V6T 1Z4, CanadaUniv British Columbia, Dept Elect & Comp Engn, Vancouver, BC V6T 1Z4, Canada
Huang, Albert
[1
]
Abugharbieh, Rafeef
论文数: 0引用数: 0
h-index: 0
机构:Univ British Columbia, Dept Elect & Comp Engn, Vancouver, BC V6T 1Z4, Canada
Abugharbieh, Rafeef
Tam, Roger
论文数: 0引用数: 0
h-index: 0
机构:Univ British Columbia, Dept Elect & Comp Engn, Vancouver, BC V6T 1Z4, Canada
Tam, Roger
Traboulsee, Anthony
论文数: 0引用数: 0
h-index: 0
机构:Univ British Columbia, Dept Elect & Comp Engn, Vancouver, BC V6T 1Z4, Canada
Traboulsee, Anthony
机构:
[1] Univ British Columbia, Dept Elect & Comp Engn, Vancouver, BC V6T 1Z4, Canada
[2] Univ British Columbia, Dept Med, Vancouver, BC V6T 1Z4, Canada
来源:
2006 IEEE International Symposium on Signal Processing and Information Technology, Vols 1 and 2
|
2006年
关键词:
magnetic resonance imaging (MRI);
biomedical image processing;
brain extraction;
D O I:
10.1109/ISSPIT.2006.270779
中图分类号:
TM [电工技术];
TN [电子技术、通信技术];
学科分类号:
0808 ;
0809 ;
摘要:
This paper presents a new fully automated method for the extraction of brain cortex from T1-weighted magnetic resonance imaging (MRI) head scans. Combined with the expectation maximization (EM) algorithm, and a hybrid of pre- and post-processing techniques, incorporating mathematical morphology and connected component analysis, geodesic active contours are evolved in 3D space to segment the cortex. The robustness and accuracy of our proposed method are validated with both synthetic and real MRI data Our method outperforms standard techniques including the Brain Extraction Tool (BET) and Statistical Parametric Mapping (SPM by lowering the misclassification rate, especially when analyzing real MRI data.