A Guide to Finite Element Simulations of Thermal Barrier Coatings

被引:51
作者
Baker, Martin [1 ]
Seiler, Philipp [2 ]
机构
[1] TU Braunschweig, Inst Werkstoffe, Langer Kamp 8, D-38106 Braunschweig, Germany
[2] Univ Cambridge, Dept Engn, Cambridge CB2 1PZ, England
关键词
finite element modelling; plasma spray forming; thermal barrier coatings (TBC); thin film coatings; INTERFACE ROUGHNESS; STRESS STATE; RESIDUAL-STRESS; Y2O3-STABILIZED ZRO2; DAMAGE MECHANISMS; LIFETIME BEHAVIOR; CRACK INITIATION; GAS-TURBINES; PART II; OXIDATION;
D O I
10.1007/s11666-017-0592-z
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
To understand the stress evolution and failure mechanisms of thermal barrier coatings (TBCs), finite element simulations are an invaluable tool. Simulations are especially useful to unwrap complex interactions of different phenomena at high temperature, including creep, sintering, diffusion, and oxidation. However, the correct setup and evaluation of a finite element model for this problem are difficult. This article reviews critical issues in modelling TBC systems. Some of the most important aspects are as follows: (a) stresses in 3D simulations may differ considerably from 2D models; (b) the interface shape strongly affects the stresses and using an idealized geometry may underestimate stresses; (c) crack propagation requires simulating sufficiently large regions to correctly capture stress redistribution; (d) a correct description of the material behaviour (visco-plasticity, TGO growth, sintering) is crucial in determining the stress state. The article discusses these and other issues in detail and provides guidelines on the choice of model parameters, boundary conditions, etc. The paper also points out open questions in modelling TBC systems and discusses aspects of verification and validation.
引用
收藏
页码:1146 / 1160
页数:15
相关论文
共 65 条
[1]   Stress distributions in plasma-sprayed thermal barrier coatings as a function of interface roughness and oxide scale thickness [J].
Ahrens, M ;
Vassen, R ;
Stöver, D .
SURFACE & COATINGS TECHNOLOGY, 2002, 161 (01) :26-35
[2]   Modeling decohesion of a top-coat from a thermally-growing oxide in a thermal barrier coating [J].
Al-Athel, Khaled ;
Loeffel, Kaspar ;
Liu, Haowen ;
Anand, Lallit .
SURFACE & COATINGS TECHNOLOGY, 2013, 222 :68-78
[3]   Determining a critical strain for APS thermal barrier coatings under service relevant loading conditions [J].
Aleksanoglu, H. ;
Scholz, A. ;
Oechsner, M. ;
Berger, C. ;
Rudolphi, M. ;
Schuetze, M. ;
Stamm, W. .
INTERNATIONAL JOURNAL OF FATIGUE, 2013, 53 :40-48
[4]   Finite element simulation of thermal barrier coating performance under thermal cycling [J].
Asghari, S. ;
Salimi, M. .
SURFACE & COATINGS TECHNOLOGY, 2010, 205 (07) :2042-2050
[5]   Influence of material models on the stress state in thermal barrier coating simulations [J].
Baeker, M. .
SURFACE & COATINGS TECHNOLOGY, 2014, 240 :301-310
[6]   The influence of axial loading on the interface stresses of thermal barrier coatings [J].
Baeker, M. ;
Roesler, J. ;
Affeldt, E. .
COMPUTATIONAL MATERIALS SCIENCE, 2009, 47 (02) :466-470
[7]   Finite element simulation of interface cracks in thermal barrier coatings [J].
Baeker, Martin .
COMPUTATIONAL MATERIALS SCIENCE, 2012, 64 :79-83
[8]   Simulation of crack propagation in thermal barrier coatings with friction [J].
Baeker, Martin ;
Roesier, Joachim .
COMPUTATIONAL MATERIALS SCIENCE, 2012, 52 (01) :236-239
[9]   A parametric study of the stress state of thermal barrier coatings Part II:: cooling stresses [J].
Bäker, M ;
Rösler, J ;
Heinze, G .
ACTA MATERIALIA, 2005, 53 (02) :469-476
[10]  
Baker M., HDB MECH MAT