On logarithmic Sobolev inequalities for continuous time random walks on graphs

被引:28
作者
Ané, C [1 ]
Ledoux, M [1 ]
机构
[1] Univ Toulouse 3, CNRS, Lab Stat & Probabil, F-31062 Toulouse, France
关键词
D O I
10.1007/s004400050263
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We establish modified logarithmic Sobolev inequalities for the path distributions of some continuous time random walks on graphs, including the simple examples of the discrete cube and the lattice ZZ(d). Our approach is based on the Malliavin calculus on Poisson spaces developed by J. Picard and stochastic calculus. The inequalities we prove are well adapted to describe the tail behaviour of various functionals such as the graph distance in this setting.
引用
收藏
页码:573 / 602
页数:30
相关论文
共 15 条
[1]  
AIDA S, 1995, CR ACAD SCI I-MATH, V321, P97
[2]  
[Anonymous], L1 MODIFIED LOGARITH
[3]  
Bakry D, 1997, NEW TRENDS IN STOCHASTIC ANALYSIS, P43
[4]  
Bakry D., 1994, LECT NOTES MATH, V1581, P1, DOI 10.1007/BFb0073872
[5]  
Bismut J. M., 1984, Large deviations and the Malliavin calculus, volume 45 of Progress in Mathematics, V45
[6]   On modified logarithmic Sobolev inequalities for Bernoulli and Poisson measures [J].
Bobkov, SG ;
Ledoux, M .
JOURNAL OF FUNCTIONAL ANALYSIS, 1998, 156 (02) :347-365
[7]  
Bremaud P., 1981, Point Processes and Queues: Martingale Dynamics
[8]  
CAPITAINE M, 1997, ELECT COMM PROB, V2
[9]  
GROSS L, 1997, HERBST INEQUALITIES
[10]  
GROSS L, 1975, AM J MATH, V97, P1060