The Chebotarev density theorem for function fields-Incomplete intervals

被引:1
作者
Kurlberg, Par [1 ]
Rosenzweig, Lior [2 ]
机构
[1] KTH Royal Inst Technol, Dept Math, SE-10044 Stockholm, Sweden
[2] Afeka Tel Aviv Coll Engn, Unit Math, Mivtza Kadesh 38, Tel Aviv, Israel
基金
瑞典研究理事会;
关键词
Chebotarev's density theorem; Function fields; Polya-Vinogradov; POLYNOMIALS; VALUES;
D O I
10.1016/j.ffa.2021.101838
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a Polya-Vinogradov type variation of the Chebotarev density theorem for function fields over finite fields valid for "incomplete intervals" I subset of F-p, provided (p(1/2) log p)/|I| = o(1). Applications include density results for irreducible trinomials in F-p[x], i.e. the number of irreducible polynomials in the set {f(x) = x(d) + a(1)x + a(0) is an element of F-p[x]}a(0) is an element of I-0,I- a(1) is an element of I-1 is similar to |I-0|.|I-1|/d provided |I-0| > p(1/2+is an element of), |I-1| > p(is an element of), or |I-1| > p(1/2+is an element of), |I-0| > p(c), and similarly when x(d) is replaced by any monic degree d polynomial in F-p[x]. Under the above assumptions we can also determine the distribution of factorization types, and find it to be consistent with the distribution of cycle types of permutations in the symmetric group S-d. (C) 2021 Published by Elsevier Inc.
引用
收藏
页数:15
相关论文
共 24 条
[1]   Shifted convolution and the Titchmarsh divisor problem over Fq[t] [J].
Andrade, J. C. ;
Bary-Soroker, L. ;
Rudnick, Z. .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2015, 373 (2040)
[2]  
[Anonymous], 1970, Algebraic Number Theory
[3]   Prime polynomial values of linear functions in short intervals [J].
Bank, Efrat ;
Bary-Soroker, Lior .
JOURNAL OF NUMBER THEORY, 2015, 151 :263-275
[4]   PRIME POLYNOMIALS IN SHORT INTERVALS AND IN ARITHMETIC PROGRESSIONS [J].
Bank, Efrat ;
Bary-Soroker, Lior ;
Rosenzweig, Lior .
DUKE MATHEMATICAL JOURNAL, 2015, 164 (02) :277-295
[5]   THE AUTOCORRELATION OF THE MOBIUS FUNCTION AND CHOWLA'S CONJECTURE FOR THE RATIONAL FUNCTION FIELD [J].
Carmon, Dan ;
Rudnick, Zeev .
QUARTERLY JOURNAL OF MATHEMATICS, 2014, 65 (01) :53-61
[6]  
Cohen S.D., 1977, Glasgow Math. J, V18, P57
[7]  
COHEN SD, 1972, J LOND MATH SOC, V6, P93
[8]   FACTORIZATION STATISTICS OF RESTRICTED POLYNOMIAL SPECIALIZATIONS OVER LARGE FINITE FIELDS [J].
Entin, Alexei .
ISRAEL JOURNAL OF MATHEMATICS, 2021, 242 (01) :37-53
[9]   ON SHORT SUMS OF TRACE FUNCTIONS [J].
Fouvry, Etienne ;
Kowalski, Emmanuel ;
Michel, Philippe ;
Raju, Chandra Sekhar ;
Rivat, Joel ;
Soundararajan, Kannan .
ANNALES DE L INSTITUT FOURIER, 2017, 67 (01) :423-449
[10]  
Iwaniec H., 2004, ANAL NUMBER THEORY