Multi-stage differential evolution algorithm for constrained D-optimal design

被引:6
作者
Zhang, Xinfeng [1 ]
Zhu, Zhibin [2 ]
Zhang, Chongqi [1 ]
机构
[1] Guangzhou Univ, Sch Econ & Stat, Guangzhou 510006, Peoples R China
[2] Guangdong Pharmaceut Univ, Undergrad Sch Med Business, Guangzhou 510006, Peoples R China
来源
AIMS MATHEMATICS | 2021年 / 6卷 / 03期
关键词
experimental design; D-optimal design; constrained experimental region; multi-stage differential evolution algorithm; CONSTRUCTION; OPTIMIZATION;
D O I
10.3934/math.2021179
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In practice, objective condition may impose constraints on design region, which make it difficult to find the exact D-optimal design. In this paper, we propose a Multi-stage Differential Evolution (MDE) algorithm to find the global approximated D-optimal design in an experimental region with linear or nonlinear constraints. MDE algorithm is approved from Differential Evolution (DE) algorithm. It has low requirements for both feasible regions and initial values. In iteration, MDE algorithm pursues evolutionary equilibrium rather than convergence speed, so it can stably converge to the global D-optimal design instead of the local ones. The advantages of MDE algorithm in finding D-optimal design will be illustrated by examples.
引用
收藏
页码:2956 / 2969
页数:14
相关论文
共 27 条
[1]   OPTIMAL BAYESIAN EXPERIMENTAL-DESIGN FOR LINEAR-MODELS [J].
CHALONER, K .
ANNALS OF STATISTICS, 1984, 12 (01) :283-300
[2]   CONSTRAINED OPTIMIZATION OF EXPERIMENTAL-DESIGN [J].
COOK, D ;
FEDOROV, V .
STATISTICS, 1995, 26 (02) :129-178
[3]   A COMPARISON OF ALGORITHMS FOR CONSTRUCTING EXACT D-OPTIMAL DESIGNS [J].
COOK, RD ;
NACHTSHEIM, CJ .
TECHNOMETRICS, 1980, 22 (03) :315-324
[4]  
Cornell J.A., 1990, Experiments with Mixtures: Designs, Models, and the Analysis of Mixture Data, V2nd
[5]   COMPROMISE DESIGNS IN HETEROSCEDASTIC LINEAR-MODELS [J].
DASGUPTA, A ;
MUKHOPADHYAY, S ;
STUDDEN, WJ .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1992, 32 (03) :363-384
[6]  
Deng W., 2020, IEEE T SYST MAN CY S, P1
[7]   Efficient computational algorithm for optimal continuous experimental designs [J].
Duan, Jiangtao ;
Gao, Wei ;
Ng, Hon Keung Tony .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 350 :98-113
[8]   Model-robust optimal designs: A genetic algorithm approach [J].
Heredia-Langner, A ;
Montgomery, DC ;
Carlyle, WM ;
Borror, CM .
JOURNAL OF QUALITY TECHNOLOGY, 2004, 36 (03) :263-279
[9]   Genetic algorithms for the construction of D-optimal designs [J].
Heredia-Langner, A ;
Carlyle, WM ;
Montgomery, DC ;
Borror, CM ;
Runger, GC .
JOURNAL OF QUALITY TECHNOLOGY, 2003, 35 (01) :28-46
[10]  
KIEFER J, 1964, ANN I STAT MATH, V16, P295