Experimental evidence of excited electron number density and temperature effects on electron-phonon coupling in gold films

被引:49
作者
Giri, Ashutosh [1 ]
Gaskins, John T. [1 ]
Foley, Brian M. [1 ]
Cheaito, Ramez [1 ]
Hopkins, Patrick E. [1 ]
机构
[1] Univ Virginia, Dept Mech & Aerosp Engn, Charlottesville, VA 22904 USA
关键词
ENERGY RELAXATION; FEMTOSECOND; METALS; THERMALIZATION; DYNAMICS; LATTICE; SURFACE; PULSES; COPPER; LIGHT;
D O I
10.1063/1.4906553
中图分类号
O59 [应用物理学];
学科分类号
摘要
The electronic transport properties of metals with weak electron-phonon coupling can be influenced by non-thermal electrons. Relaxation processes involving non-thermal electrons competing with the thermalized electron system have led to inconsistencies in the understanding of how electrons scatter and relax with the less energetic lattice. Recent theoretical and computational works have shown that the rate of energy relaxation with the metallic lattice will change depending on the thermalization state of the electrons. Even though 20 years of experimental works have focused on understanding and isolating these electronic relaxation mechanisms with short pulsed irradiation, discrepancies between these existing works have not clearly answered the fundamental question of the competing effects between non-thermal and thermal electrons losing energy to the lattice. In this work, we demonstrate the ability to measure the electron relaxation for varying degrees of both electron-electron and electron-phonon thermalization. This series of measurements of electronic relaxation over a predicted effective electron temperature range up to similar to 3500K and minimum lattice temperatures of 77K validate recent computational and theoretical works that theorize how a nonequilibrium distribution of electrons transfers energy to the lattice. Utilizing this wide temperature range during pump-probe measurements of electron-phonon relaxation, we explain discrepancies in the past two decades of literature of electronic relaxation rates. We experimentally demonstrate that the electron-phonon coupling factor in gold increases with increasing lattice temperature and laser fluences. Specifically, we show that at low laser fluences corresponding to small electron perturbations, energy relaxation between electrons and phonons is mainly governed by non-thermal electrons, while at higher laser fluences, non-thermal electron scattering with the lattice is less influential on the energy relaxation mechanisms. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:8
相关论文
共 52 条
  • [1] Abeles F., 1967, ADV OPTICAL TECHNIQU, P145
  • [2] THEORY OF THERMAL RELAXATION OF ELECTRONS IN METALS
    ALLEN, PB
    [J]. PHYSICAL REVIEW LETTERS, 1987, 59 (13) : 1460 - 1463
  • [3] Anisimov S., 1974, PHYS REV B, V66, P375
  • [4] Bauer GEW, 2012, NAT MATER, V11, P391, DOI [10.1038/nmat3301, 10.1038/NMAT3301]
  • [5] FEMTOSECOND ELECTRONIC HEAT-TRANSPORT DYNAMICS IN THIN GOLD-FILMS
    BRORSON, SD
    FUJIMOTO, JG
    IPPEN, EP
    [J]. PHYSICAL REVIEW LETTERS, 1987, 59 (17) : 1962 - 1965
  • [6] FEMTOSECOND ROOM-TEMPERATURE MEASUREMENT OF THE ELECTRON-PHONON COUPLING CONSTANT-LAMBDA IN METALLIC SUPERCONDUCTORS
    BRORSON, SD
    KAZEROONIAN, A
    MOODERA, JS
    FACE, DW
    CHENG, TK
    IPPEN, EP
    DRESSELHAUS, MS
    DRESSELHAUS, G
    [J]. PHYSICAL REVIEW LETTERS, 1990, 64 (18) : 2172 - 2175
  • [7] Nanoscale thermal transport. II. 2003-2012
    Cahill, David G.
    Braun, Paul V.
    Chen, Gang
    Clarke, David R.
    Fan, Shanhui
    Goodson, Kenneth E.
    Keblinski, Pawel
    King, William P.
    Mahan, Gerald D.
    Majumdar, Arun
    Maris, Humphrey J.
    Phillpot, Simon R.
    Pop, Eric
    Shi, Li
    [J]. APPLIED PHYSICS REVIEWS, 2014, 1 (01):
  • [8] Solidification Velocities in Deeply Undercooled Silver
    Chan, Wai-Lun
    Averback, Robert S.
    Cahill, David G.
    Ashkenazy, Yinon
    [J]. PHYSICAL REVIEW LETTERS, 2009, 102 (09)
  • [9] Dynamics of femtosecond laser-induced melting of silver
    Chan, Wai-Lun
    Averback, Robert S.
    Cahill, David G.
    Lagoutchev, Alexei
    [J]. PHYSICAL REVIEW B, 2008, 78 (21)
  • [10] The role of electron-phonon coupling in ultrafast laser heating
    Chen, JK
    Latham, WP
    Beraun, JE
    [J]. JOURNAL OF LASER APPLICATIONS, 2005, 17 (01) : 63 - 68