Oscillating in Synchrony with a Metronome: Serial Dependence, Limit Cycle Dynamics, and Modeling

被引:22
作者
Torre, Kjerstin [1 ,2 ]
Balasubramaniam, Ramesh [1 ]
Delignieres, Didier [2 ]
机构
[1] MacMaster Univ, Sensorimotor Neurosci Lab, Hamilton, ON, Canada
[2] Univ Montpellier I, F-34006 Montpellier, France
关键词
Oscillation; asynchrony; 1/f noise; limit cycle model; parametric driving; HUMAN GAIT; BIMANUAL COORDINATION; FRACTAL DYNAMICS; TIME-SERIES; NOISE; MOVEMENTS; STABILIZATION; REASSESSMENT; EXPONENTS; SINGLE;
D O I
10.1123/mcj.14.3.323
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
We analyzed serial dependencies in periods and asynchronies collected during oscillations performed in synchrony with a metronome. Results showed that asynchronies contain 1/f fluctuations, and the series of periods contain antipersistent dependence. The analysis of the phase portrait revealed a specific asymmetry induced by synchronization. We propose a hybrid limit cycle model including a cycle-dependent stiffness parameter provided with fractal properties, and a parametric driving function based on velocity. This model accounts for most experimentally evidenced statistical features, including serial dependence and limit cycle dynamics. We discuss the results and modeling choices within the framework of event-based and emergent timing.
引用
收藏
页码:323 / 343
页数:21
相关论文
共 41 条
[1]   A stochastic model of human gait dynamics [J].
Ashkenazy, Y ;
Hausdorff, JA ;
Ivanov, PC ;
Stanley, HE .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2002, 316 (1-4) :662-670
[2]   Dynamics of multifrequency coordination using parametric driving: theory and experiment [J].
Assisi, CG ;
Jirsa, VK ;
Kelso, JAS .
BIOLOGICAL CYBERNETICS, 2005, 93 (01) :6-21
[3]   Keeping with the beat: movement trajectories contribute to movement timing [J].
Balasubramaniam, R ;
Wing, AM ;
Daffertshofer, A .
EXPERIMENTAL BRAIN RESEARCH, 2004, 159 (01) :129-134
[4]   Trajectory formation in timed repetitive movements [J].
Balasubramaniam, Ramesh .
MOTOR CONTROL AND LEARNING, 2006, :47-54
[5]   Modeling rhythmic interlimb coordination: Beyond the Haken-Kelso-Bunz model [J].
Beek, PJ ;
Peper, CE ;
Daffertshofer, A .
BRAIN AND COGNITION, 2002, 48 (01) :149-165
[6]   Numerical methods for second-order stochastic differential equations [J].
Burrage, Kevin ;
Lenane, Ian ;
Lythe, Grant .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2007, 29 (01) :245-264
[7]   Long memory processes (1/f(alpha) type) in human coordination [J].
Chen, YQ ;
Ding, MZ ;
Kelso, JAS .
PHYSICAL REVIEW LETTERS, 1997, 79 (22) :4501-4504
[8]   Effects of noise on the phase dynamics of nonlinear oscillators [J].
Daffertshofer, A .
PHYSICAL REVIEW E, 1998, 58 (01) :327-338
[9]   Time intervals production in tapping and oscillatory motion [J].
Delignières, D ;
Lemoine, L ;
Torre, K .
HUMAN MOVEMENT SCIENCE, 2004, 23 (02) :87-103
[10]   Fractal models for event-based and dynamical timers [J].
Delignieres, Didier ;
Torre, Kjerstin ;
Lemoine, Loic .
ACTA PSYCHOLOGICA, 2008, 127 (02) :382-397