Comparisons of ten estimation methods for the parameters of Marshall-Olkin extended exponential distribution

被引:12
作者
Mazucheli, J. [1 ,2 ]
Ghitany, M. E. [3 ]
Louzada, F. [2 ]
机构
[1] Univ Estadual Maringa, DEs, Maringa, Parana, Brazil
[2] Univ Sao Paulo, ICMC, Sao Paulo, SP, Brazil
[3] Kuwait Univ, Dept Stat & OR, Fac Sci, Kuwait, Kuwait
关键词
Marshall-Olkin extended family of distributions; Monte Carlo simulations; Parametric estimation; Survival analysis; 62N02; 62F10; RELIABILITY; EXTENSION; FAMILY;
D O I
10.1080/03610918.2016.1171345
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The aim of this article is to compare via Monte Carlo simulations the finite sample properties of the parameter estimates of the Marshall-Olkin extended exponential distribution obtained by ten estimation methods: maximum likelihood, modified moments, L-moments, maximum product of spacings, ordinary least-squares, weighted least-squares, percentile, Cramer-von-Mises, Anderson-Darling, and Right-tail Anderson-Darling. The bias, root mean-squared error, absolute and maximum absolute difference between the true and estimated distribution functions are used as criterion of comparison. The simulation study reveals that the L-moments and maximum products of spacings methods are highly competitive with the maximum likelihood method in small as well as in large-sized samples.
引用
收藏
页码:5627 / 5645
页数:19
相关论文
共 74 条
[1]  
Abramowitz M., 1964, National Bureau of Standards Applied Mathematics Series, DOI DOI 10.1119/1.15378
[2]   On an extension of the exponential-geometric distribution [J].
Adamidis, K ;
Dimitrakopoulou, T ;
Loukas, S .
STATISTICS & PROBABILITY LETTERS, 2005, 73 (03) :259-269
[3]   A lifetime distribution with decreasing failure rate [J].
Adamidis, K ;
Loukas, S .
STATISTICS & PROBABILITY LETTERS, 1998, 39 (01) :35-42
[4]  
Al-Saiari A. Y., 2014, Int. J. Stat. Probab, V3, P78, DOI [10.5539/ijsp.v3n1p78, DOI 10.5539/IJSP.V3N1P78]
[5]  
[Anonymous], 1982, SURVIVAL ANAL
[6]  
[Anonymous], 2005, International Journal of Applied Mathematics
[7]  
[Anonymous], 2007, Journal of Stress, Trauma, Anxiety, and Resilience
[8]   General results for the Marshall and Olkin's family of distributions [J].
Barreto-Souza, Wagner ;
Lemonte, Artur J. ;
Cordeiro, Gauss M. .
ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 2013, 85 (01) :3-21
[9]  
Bdair OM, 2012, J APPL STAT SCI, V19, P141
[10]   Testing for the Marshall-Olkin extended form of the Weibull distribution [J].
Caroni, Chrys .
STATISTICAL PAPERS, 2010, 51 (02) :325-336