Infinitely many sign-changing solutions for the nonlinear Schrodinger-Poisson system

被引:147
作者
Liu, Zhaoli [1 ]
Wang, Zhi-Qiang [2 ,3 ]
Zhang, Jianjun [4 ]
机构
[1] Capital Normal Univ, Sch Math Sci, Beijing 100037, Peoples R China
[2] Tianjin Univ, Ctr Appl Math, Tianjin 300072, Peoples R China
[3] Utah State Univ, Dept Math & Stat, Logan, UT 84322 USA
[4] Nankai Univ, Chern Inst Math, Tianjin 300071, Peoples R China
关键词
NODAL SOLUTIONS; BOUND-STATES; EXISTENCE; EQUATION; WAVES;
D O I
10.1007/s10231-015-0489-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the following Schrodinger-Poisson system [GRAPHICS] We investigate the existence of multiple bound state solutions, in particular sign-changing solutions. By using the method of invariant sets of descending flow, we prove that this system has infinitely many sign-changing solutions. In particular, the nonlinear term includes the power-type nonlinearity f(u) = vertical bar u vertical bar(p-2)u for the well-studied case p is an element of (4, 6), and the less studied case p is an element of (3, 4), and for the latter case, few existence results are available in the literature.
引用
收藏
页码:775 / 794
页数:20
相关论文
共 32 条
[1]   Existence of least energy nodal solution for a Schrodinger-Poisson system in bounded domains [J].
Alves, Claudianor O. ;
Souto, Marco A. S. .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2014, 65 (06) :1153-1166
[2]   Multiple bound states for the Schrodinger-Poisson problem [J].
Ambrosetti, Antonio ;
Ruiz, David .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2008, 10 (03) :391-404
[3]   On Schrodinger-Poisson Systems [J].
Ambrosetti, Antonio .
MILAN JOURNAL OF MATHEMATICS, 2008, 76 (01) :257-274
[4]   Ground state solutions for the nonlinear Schrodinger-Maxwell equations [J].
Azzollini, A. ;
Pomponio, A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 345 (01) :90-108
[5]   On the Schrodinger-Maxwell equations under the effect of a general nonlinear term [J].
Azzollini, A. ;
d'Avenia, P. ;
Pomponio, A. .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2010, 27 (02) :779-791
[6]   Nodal solutions of a p-Laplacian equation [J].
Bartsch, T ;
Liu, ZL ;
Weth, T .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2005, 91 :129-152
[7]   On a superlinear elliptic p-Laplacian equation [J].
Bartsch, T ;
Liu, ZL .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 198 (01) :149-175
[8]   Sign changing solutions of superlinear Schrodinger equations [J].
Bartsch, T ;
Liu, ZL ;
Weth, T .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2004, 29 (1-2) :25-42
[9]   EXISTENCE AND MULTIPLICITY RESULTS FOR SOME SUPERLINEAR ELLIPTIC PROBLEMS ON R(N) [J].
BARTSCH, T ;
WANG, ZQ .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1995, 20 (9-10) :1725-1741
[10]  
BARTSCH T, 2001, COMMUN CONTEMP MATH, V3, P1, DOI DOI 10.1142/S0219199701000494