On the compactness problem of extremal functions to sharp Riemannian LP-Sobolev inequalities

被引:0
作者
Barbosa, Ezequiel R. [1 ]
Montenegro, Marcos [1 ]
机构
[1] Univ Fed Minas Gerais, Dept Matemat, BR-30123970 Belo Horizonte, MG, Brazil
关键词
Sharp Sobolev inequalities; Extremal functions; Compactness problem; YAMABE PROBLEM; CONSTANTS; EQUATIONS; PRINCIPLE; THEOREM;
D O I
10.1016/j.jde.2010.02.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (M, g) be a smooth compact Riemannian manifold without boundary of dimension n >= 2. For 1 <p <q(0) = min(2, root n), Djadli and Druet (2001) [13] proved the existence of extremal functions to the following sharp Riemannian LP-Sobolev inequality: parallel to u parallel to(p)(Lp*(M)) <= K(n,p)(p) parallel to del u parallel to(p)(pL(M)) + B-0(p,g)parallel to u parallel to(Lp(M))'(p) where p* = np/n-p and K (n, p)(p) and B-0(p, g) stands for, respectively, the first and second Sobolev best constants for this inequality. Let then E-g(p) be the corresponding extremal set normalized by the unity L-p*-norm. In contrast what happens in the whole space R" for 1 < p < n and in the Euclidean sphere S-n for p = 2, we establish the C-0-compactness of E-g(p) for any 1 < p < q0. Moreover, we address the question from a uniform viewpoint on p. Precisely, we prove that the set U1+epsilon <= p <= q0 E-g(p) is C -compact for any e > 0. The continuity of the map p E [1, qo) -> Bo(p, g) is discussed in detail since it plays a key role in the proof of the main theorem. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:965 / 988
页数:24
相关论文
共 41 条
[11]   Sharp Sobolev inequalities in the presence of a twist [J].
Collion, Stephane ;
Hebey, Emmanuel ;
Vaugon, Michel .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 359 (06) :2531-2537
[12]  
Demyanov A. V., 2006, St. Petersburg Math. J, V17, P773, DOI [10.1090/S1061-0022-06-00929-0, DOI 10.1090/S1061-0022-06-00929-0]
[13]   Extremal functions for optimal Sobolev inequalities on compact manifolds [J].
Djadli, Z ;
Druet, O .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2001, 12 (01) :59-84
[14]   The best constants problem in Sobolev inequalities [J].
Druet, O .
MATHEMATISCHE ANNALEN, 1999, 314 (02) :327-346
[15]  
Druet O, 2000, T AM MATH SOC, V353, P269
[16]  
Druet O, 2004, INT MATH RES NOTICES, V2004, P1143
[17]   Isoperimetric inequalities on compact manifolds [J].
Druet, O .
GEOMETRIAE DEDICATA, 2002, 90 (01) :217-236
[18]   SHARP CONSTANT IN A SOBOLEV TRACE INEQUALITY [J].
ESCOBAR, JF .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1988, 37 (03) :687-698
[19]   Given a smooth compact Riemannian n-dimensional manifold, consider the Sobolev inequality [J].
Hebey, E .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1998, 77 (07) :721-733
[20]   Sharp Sobolev-Poincare inequalities on compact Riemannian manifolds [J].
Hebey, E .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 354 (03) :1193-1213