On the compactness problem of extremal functions to sharp Riemannian LP-Sobolev inequalities

被引:0
作者
Barbosa, Ezequiel R. [1 ]
Montenegro, Marcos [1 ]
机构
[1] Univ Fed Minas Gerais, Dept Matemat, BR-30123970 Belo Horizonte, MG, Brazil
关键词
Sharp Sobolev inequalities; Extremal functions; Compactness problem; YAMABE PROBLEM; CONSTANTS; EQUATIONS; PRINCIPLE; THEOREM;
D O I
10.1016/j.jde.2010.02.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (M, g) be a smooth compact Riemannian manifold without boundary of dimension n >= 2. For 1 <p <q(0) = min(2, root n), Djadli and Druet (2001) [13] proved the existence of extremal functions to the following sharp Riemannian LP-Sobolev inequality: parallel to u parallel to(p)(Lp*(M)) <= K(n,p)(p) parallel to del u parallel to(p)(pL(M)) + B-0(p,g)parallel to u parallel to(Lp(M))'(p) where p* = np/n-p and K (n, p)(p) and B-0(p, g) stands for, respectively, the first and second Sobolev best constants for this inequality. Let then E-g(p) be the corresponding extremal set normalized by the unity L-p*-norm. In contrast what happens in the whole space R" for 1 < p < n and in the Euclidean sphere S-n for p = 2, we establish the C-0-compactness of E-g(p) for any 1 < p < q0. Moreover, we address the question from a uniform viewpoint on p. Precisely, we prove that the set U1+epsilon <= p <= q0 E-g(p) is C -compact for any e > 0. The continuity of the map p E [1, qo) -> Bo(p, g) is discussed in detail since it plays a key role in the proof of the main theorem. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:965 / 988
页数:24
相关论文
共 41 条
[1]  
AUBIN T, 1976, J MATH PURE APPL, V55, P269
[2]   On the best Sobolev inequality [J].
Aubin, T ;
Li, YY .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1999, 78 (04) :353-387
[3]  
Aubin T., 1976, J. Diff. Geom., V11, P573
[4]   ON THE GEOMETRIC DEPENDENCE OF RIEMANNIAN SOBOLEV BEST CONSTANTS [J].
Barbosa, Ezequiel R. ;
Montenegro, Marcos .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2009, 8 (06) :1759-1777
[5]   SHARP SOBOLEV INEQUALITIES ON THE SPHERE AND THE MOSER-TRUDINGER INEQUALITY [J].
BECKNER, W .
ANNALS OF MATHEMATICS, 1993, 138 (01) :213-242
[6]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[7]   On the second best constant in logarithmic Sobolev inequalities on complete Riemannian manifolds [J].
Brouttelande, C .
BULLETIN DES SCIENCES MATHEMATIQUES, 2003, 127 (04) :292-312
[8]   ON THE MINIMIZATION OF SYMMETRICAL FUNCTIONALS [J].
CARLEN, EA ;
LOSS, M .
REVIEWS IN MATHEMATICAL PHYSICS, 1994, 6 (5A) :1011-1032
[9]  
CARLESON L, 1986, B SCI MATH, V110, P113
[10]   Compactness results for divergence type nonlinear elliptic equations [J].
Ceccon, Jurandir ;
Montenegro, Marcos .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2009, 188 (04) :653-677