Low-temperature rapid thermal CVD of nanocrystalline graphene on Cu thin films

被引:2
作者
Croin, Luca [1 ,2 ]
Vittone, Ettore [3 ,4 ]
Amato, Giampiero [2 ]
机构
[1] Politecn Torino, Dept Appl Sci & Technol DISAT, I-10129 Turin, Italy
[2] INRiM, Quantum Res Lab, I-10135 Turin, Italy
[3] Univ Turin, Dept Phys, I-10125 Turin, Italy
[4] NIS Interdept Ctr, I-10125 Turin, Italy
来源
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS | 2014年 / 251卷 / 12期
关键词
Cu; graphene; Raman spectroscopy; rapid thermal chemical vapor deposition; thin films; CHEMICAL-VAPOR-DEPOSITION; RAMAN-SPECTROSCOPY; LAYER GRAPHENE; HIGH-QUALITY; LARGE-AREA; MONOLAYER GRAPHENE; COPPER; ETHANOL; CONVERSION; GROWTH;
D O I
10.1002/pssb.201451219
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Chemical vapor deposition (CVD) of graphene onto Cu substrates is a very promising approach for large-scale production. When dealing with Cu thin films instead of foils, there are additional problems related to the stability of the film at high temperatures. We show that the film rupture and agglomeration can be prevented by monitoring in-situ dewetting dynamics of the catalytist. We investigated the possibility to perform CVD of graphene onto Cu films, 200 nm thick, at low-pressure conditions, with ethanol or methane as C precursors. Same recipes applied on Cu foils lead to worse results highlighting the important role played by the substrate thickness to achieve a high catalytic activity. The influence on the deposition quality of parameters such as time, temperature and hydrogen flow is then discussed. (C) 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:2515 / 2520
页数:6
相关论文
共 32 条
[1]  
Amato G., 2013, P 2013 MRS FALL M LA, DOI [10.1557/opl.2014.506, DOI 10.1557/OPL.2014.506]
[2]   Facile one-step transfer process of graphene [J].
Bajpai, Reeti ;
Roy, Soumyendu ;
Jain, Lokendra ;
Kulshrestha, Neha ;
Hazra, Kiran S. ;
Misra, D. S. .
NANOTECHNOLOGY, 2011, 22 (22)
[3]   Resonant Raman spectroscopy of graphene grown on copper substrates [J].
Costa, Sara D. ;
Righi, Ariete ;
Fantini, Cristiano ;
Hao, Yufeng ;
Magnuson, Carl ;
Colombo, Luigi ;
Ruoff, Rodney S. ;
Pimenta, Marcos A. .
SOLID STATE COMMUNICATIONS, 2012, 152 (15) :1317-1320
[4]  
Croin L., 2014, THIN SOLID IN PRESS
[5]   Catalytic conversion of ethanol to hydrogen using combinatorial methods [J].
Duan, S ;
Senkan, S .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2005, 44 (16) :6381-6386
[6]   Raman spectroscopy as a versatile tool for studying the properties of graphene [J].
Ferrari, Andrea C. ;
Basko, Denis M. .
NATURE NANOTECHNOLOGY, 2013, 8 (04) :235-246
[7]   Face-to-face transfer of wafer-scale graphene films [J].
Gao, Libo ;
Ni, Guang-Xin ;
Liu, Yanpeng ;
Liu, Bo ;
Castro Neto, Antonio H. ;
Loh, Kian Ping .
NATURE, 2014, 505 (7482) :190-194
[8]   Chemical vapor deposition synthesis of graphene on copper with methanol, ethanol, and propanol precursors [J].
Guermoune, Abdeladim ;
Chari, Tarun ;
Popescu, Filip ;
Sabri, Shadi S. ;
Guillemette, Jonathan ;
Skulason, Helgi S. ;
Szkopek, Thomas ;
Siaj, Mohamed .
CARBON, 2011, 49 (13) :4204-4210
[9]   Direct evidence of advantage of Cu(111) for graphene synthesis by using Raman mapping and electron backscatter diffraction [J].
Ishihara, Masatou ;
Koga, Yoshinori ;
Kim, Jaeho ;
Tsugawa, Kazuo ;
Hasegawa, Masataka .
MATERIALS LETTERS, 2011, 65 (19-20) :2864-2867
[10]   Direct Chemical Vapor Deposition of Graphene on Dielectric Surfaces [J].
Ismach, Ariel ;
Druzgalski, Clara ;
Penwell, Samuel ;
Schwartzberg, Adam ;
Zheng, Maxwell ;
Javey, Ali ;
Bokor, Jeffrey ;
Zhang, Yuegang .
NANO LETTERS, 2010, 10 (05) :1542-1548