COMPUTING HOMOLOGICAL RESIDUE FIELDS IN ALGEBRA AND TOPOLOGY

被引:5
作者
Balmer, Paul [1 ]
Cameron, James C. [1 ]
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
关键词
Tensor-triangular geometry; homological residue field; RING;
D O I
10.1090/proc/15412
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We determine the homological residue fields, in the sense of tensor-triangular geometry, in a series of concrete examples ranging from topological stable homotopy theory to modular representation theory of finite groups.
引用
收藏
页码:3177 / 3185
页数:9
相关论文
共 15 条
[1]  
[Anonymous], 2020, J EC POLYTECH MATH, V7, P1069, DOI [10.5802/jep.135, DOI 10.5802/JEP.135]
[2]   A simple universal property of Thom ring spectra [J].
Antolin-Camarena, Omar ;
Barthel, Tobias .
JOURNAL OF TOPOLOGY, 2019, 12 (01) :56-78
[3]   Nilpotence theorems via homological residue fields [J].
Balmer, Paul .
TUNISIAN JOURNAL OF MATHEMATICS, 2020, 2 (02) :359-378
[4]   Tensor-triangular fields: ruminations [J].
Balmer, Paul ;
Krause, Henning ;
Stevenson, Greg .
SELECTA MATHEMATICA-NEW SERIES, 2019, 25 (01)
[5]   The spectrum of the equivariant stable homotopy category of a finite group [J].
Balmer, Paul ;
Sanders, Beren .
INVENTIONES MATHEMATICAE, 2017, 208 (01) :283-326
[6]   On the Balmer spectrum for compact Lie groups [J].
Barthel, Tobias ;
Greenlees, J. P. C. ;
Hausmann, Markus .
COMPOSITIO MATHEMATICA, 2020, 156 (01) :39-76
[7]   STRATIFICATION FOR MODULE CATEGORIES OF FINITE GROUP SCHEMES [J].
Benson, Dave ;
Iyengar, Srikanth B. ;
Krause, Henning ;
Pevtsova, Julia .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 31 (01) :265-302
[8]   THE VARIETIES AND THE CO-HOMOLOGY RING OF A MODULE [J].
CARLSON, JF .
JOURNAL OF ALGEBRA, 1983, 85 (01) :104-143
[9]  
Carlson JF, 2017, NEW YORK J MATH, V23, P351
[10]   Representation-theoretic support spaces for finite group schemes [J].
Friedlander, EM ;
Pevtsova, J .
AMERICAN JOURNAL OF MATHEMATICS, 2005, 127 (02) :379-420