Real-time calculus for scheduling hard real-time systems

被引:0
作者
Thiele, L [1 ]
Chakraborty, S [1 ]
Naedele, M [1 ]
机构
[1] Swiss Fed Inst Technol, Comp Engn & Networks Lab, CH-8092 Zurich, Switzerland
来源
ISCAS 2000: IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS - PROCEEDINGS, VOL IV: EMERGING TECHNOLOGIES FOR THE 21ST CENTURY | 2000年
关键词
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This paper establishes a link between three areas, namely Max-Plus Linear System Theory as used for dealing with certain classes of discrete event systems, Network Calculus for establishing time bounds in communication networks, and real-time scheduling. In particular, it is shown that important results from scheduling theory can be easily derived and unified using Max-Plus Algebra. Based on the proposed network theory for real-time systems, the first polynomial algorithm for the feasibility analysis and optimal priority assignment for a general task model is derived.
引用
收藏
页码:101 / 104
页数:4
相关论文
共 16 条
[1]   Performance bounds for flow control protocols [J].
Agrawal, R ;
Cruz, RL ;
Okino, C ;
Rajan, R .
IEEE-ACM TRANSACTIONS ON NETWORKING, 1999, 7 (03) :310-323
[2]  
[Anonymous], J ACM
[3]   FIXED PRIORITY PREEMPTIVE SCHEDULING - AN HISTORICAL-PERSPECTIVE [J].
AUDSLEY, NC ;
BURNS, A ;
DAVIS, RI ;
TINDELL, KW ;
WELLINGS, AJ .
REAL-TIME SYSTEMS, 1995, 8 (2-3) :173-198
[4]  
Baccelli F, 1992, SYNCHRONIZATION LINE
[5]  
BARUAH S, 1999, UNPUB STATIC PRIORIT
[6]  
BARUAH S, 1998, GEN MODEL RECURRINGR, P114
[7]  
BOUDEC JL, 1998, IEEE T INFORMATION T, V44
[8]   A CALCULUS FOR NETWORK DELAY .1. NETWORK ELEMENTS IN ISOLATION [J].
CRUZ, RL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1991, 37 (01) :114-131
[9]  
CUNNINGHAMEGREE.R, 1979, LECT NOTE EC MATH SY, V166
[10]  
GRESSER K, 1993, 268 VDI