Stable and dendrite-free Zn anode with artificial desolvation interface layer toward high-performance Zn-ion capacitor

被引:52
作者
Gong, Zhe [1 ]
Jiang, Kai [2 ]
Wang, Pengfei [1 ,6 ]
Liu, Xunliang [2 ]
Wang, Dashuai [4 ,5 ]
Ye, Ke [1 ]
Zhu, Kai [1 ,3 ]
Yan, Jun [1 ]
Wang, Guiling [1 ]
Cao, Dianxue [1 ]
机构
[1] Harbin Engn Univ, Coll Mat Sci & Chem Engn, Key Lab Superlight Mat & Surface Technol, Minist Educ, Harbin 150001, Heilongjiang, Peoples R China
[2] Univ Sci & Technol Beijing, Sch Energy & Environm Engn, Beijing 100083, Peoples R China
[3] Hong Kong Polytech Univ, Res Inst Smart Energy, Dept Mech Engn, Hong Kong 999077, Peoples R China
[4] Tsinghua Univ, Tsinghua Berkeley Shenzhen Inst, Senzhen Geim Graphene Ctr, Shenzhen 518055, Guangdong, Peoples R China
[5] Tsinghua Univ, Senzhen Geim Graphene Ctr, Tsinghua Shenzhen Int Grad Sch, Shenzhen 518055, Guangdong, Peoples R China
[6] Shenyang Univ Technol, Sch Environm & Chem Engn, Key Lab Polymer & Catalyst Synth Technol Liaoning, Shenyang 110870, Liaoning, Peoples R China
来源
JOURNAL OF ENERGY CHEMISTRY | 2022年 / 72卷
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Zn ion capacitors; Zn metal anodes; Aqueous electrolyte; Dendrite-free surface; ZINC ANODE; ELECTROLYTE; BATTERIES; KINETICS;
D O I
10.1016/j.jechem.2022.05.017
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Aqueous Zn-based energy storage devices possess tremendous advantages, such as low cost, high safety, and competitive energy density, due to employing a Zn metal anode and aqueous electrolyte. However, the cycling stability and rate ability of a Zn anode are hindered by Zn dendrite growth and sluggish ion transfer in the electrode/electrolyte interface. Herein, the interfacial properties of Zn anodes are improved through the introduction of a silver (Ag) protective layer, which facilitates uniform Zn deposition and regulates Zn ion transport. As a result, Ag-coated Zn anodes display stable cycling performance (600 h at 1 mA cm-2) and low overpotential (150 mV at 50 mA cm-2 after 2000 cycles). The Ag layer in situ electrochemically converts into an AgZn3 layer and promotes Zn ion desolvation and threedimensional diffusion processes. Moreover, a Zn-ion capacitor assembled with an Ag-coated Zn anode and active carbon cathode shows a capable cycling lifespan and rate performance. This study provides a feasible strategy for constructing a stabilized and dendrite-free Zn anode for the development of high-performance Zn-based energy storage devices. (c) 2022 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by ELSEVIER B.V. and Science Press. All rights reserved.
引用
收藏
页码:143 / 151
页数:9
相关论文
共 48 条
[1]   Rational Design of Sulfur-Doped Three-Dimensional Ti3C2Tx MXene/ZnS Heterostructure as Multifunctional Protective Layer for Dendrite-Free Zinc-Ion Batteries [J].
An, Yongling ;
Tian, Yuan ;
Liu, Chengkai ;
Xiong, Shenglin ;
Feng, Jinkui ;
Qian, Yitai .
ACS NANO, 2021, 15 (09) :15259-15273
[2]   FeCo alloy/N, S dual-doped carbon composite as a high-performance bifunctional catalyst in an advanced rechargeable zinc-air battery [J].
Chang, Shengming ;
Zhang, Hui ;
Zhang, Zhongyi .
JOURNAL OF ENERGY CHEMISTRY, 2021, 56 :64-71
[3]   Recent advances in energy storage mechanism of aqueous zinc-ion batteries [J].
Chen, Duo ;
Lu, Mengjie ;
Cai, Dong ;
Yang, Hang ;
Han, Wei .
JOURNAL OF ENERGY CHEMISTRY, 2021, 54 :712-726
[4]   Atomic Insights into the Fundamental Interactions in Lithium Battery Electrolytes [J].
Chen, Xiang ;
Zhang, Qiang .
ACCOUNTS OF CHEMICAL RESEARCH, 2020, 53 (09) :1992-2002
[5]   Confinement of Zinc Salt in Ultrathin Heterogeneous Film to Stabilize Zinc Metal Anode [J].
Cui, Junya ;
Li, Zhenhua ;
Xu, Annan ;
Li, Jianbo ;
Shao, Mingfei .
SMALL, 2021, 17 (28)
[6]   Zinc anode stabilized by an organic-inorganic hybrid solid electrolyte interphase [J].
Di, Shengli ;
Nie, Xueyu ;
Ma, Guoqiang ;
Yuan, Wentao ;
Wang, Yuanyuan ;
Liu, Yongchang ;
Shen, Shigang ;
Zhang, Ning .
ENERGY STORAGE MATERIALS, 2021, 43 :375-382
[7]   Electrochemically induced phase transition in a nanoflower vanadium tetrasulfide cathode for high-performance zinc-ion batteries [J].
Gao, Shizhe ;
Ju, Peng ;
Liu, Ziquan ;
Zhai, Lei ;
Liu, Wenbao ;
Zhang, Xiaoyu ;
Zhou, Yanli ;
Dong, Caifu ;
Jiang, Fuyi ;
Sun, Jianchao .
JOURNAL OF ENERGY CHEMISTRY, 2022, 69 :356-362
[8]   Lithiophilic Cu-Li2O matrix on a Cu Collector to Stabilize Lithium Deposition for Lithium Metal Batteries [J].
Gong, Zhe ;
Lian, Cheng ;
Wang, Pengfei ;
Huang, Kai ;
Zhu, Kai ;
Ye, Ke ;
Yan, Jun ;
Wang, Guiling ;
Cao, Dianxue .
ENERGY & ENVIRONMENTAL MATERIALS, 2022, 5 (04) :1270-1277
[9]   High performance of HNaV6O16•4H2O nanobelts for aqueous zinc-ion batteries with in-situ phase transformation by Zn(CF3SO3)2 electrolyte [J].
Guan, Chao ;
Hu, Fang ;
Yu, Xin ;
Chen, Hai-Lian ;
Song, Gui-Hong ;
Zhu, Kai .
RARE METALS, 2022, 41 (02) :448-456
[10]   A Corrosion-Resistant and Dendrite-Free Zinc Metal Anode in Aqueous Systems [J].
Han, Daliang ;
Wu, Shichao ;
Zhang, Siwei ;
Deng, Yaqian ;
Cui, Changjun ;
Zhang, Lina ;
Long, Yu ;
Li, Huan ;
Tao, Ying ;
Weng, Zhe ;
Yang, Quan-Hong ;
Kang, Feiyu .
SMALL, 2020, 16 (29)