Surface Ligand Management for Stable FAPbI3 Perovskite Quantum Dot Solar Cells

被引:232
作者
Xue, Jingjing [1 ,2 ]
Lee, Jin-Wook [1 ,2 ]
Dai, Zhenghong [2 ]
Wang, Rui [1 ,2 ]
Nuryyeva, Selbi [3 ]
Liao, Michael E. [1 ]
Chang, Sheng-Yung [1 ]
Meng, Lei [1 ]
Meng, Dong [1 ,2 ]
Sun, Pengyu [1 ]
Lin, Oliver [1 ,2 ]
Goorsky, Mark S. [1 ]
Yang, Yang [1 ,2 ]
机构
[1] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Calif Nano Syst Inst, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
CESIUM LEAD HALIDE; COLLOIDAL SYNTHESIS; NANOCRYSTALS; FORMAMIDINIUM; TRIHALIDE; EXCHANGE; CSPBX3; BR; CL;
D O I
10.1016/j.joule.2018.07.018
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In contrast to conventional colloidal quantum dots (CQDs), management of insulating ligands on perovskite CQDs is challenging because their ionic bonds are highly vulnerable to polar solvents. Consequently, there have been only a few examples of perovskite CQD solar cells incorporating relatively robust inorganic perovskite of which optoelectronic properties are not ideal for photovoltaic devices. Here, we report efficient and stable CQD solar cells based on formamidinium lead triiodide (FAPbI(3)) CQDs realized by rational surface regulation. Tailoring polarity of antisolvents for the post-synthetic process enabled effective removal of the insulating ligands on FAPbI(3) CQDs while preserving perovskite cores. Owing to the enhanced inter-dot electrical coupling, a power-conversion efficiency of 8.38% was demonstrated. Furthermore, the FAPbI(3) CQDs-based devices showed superior stability over those of bulk FAPbI(3) devices. Thermodynamic and crystallographic analyses revealed that enhanced contribution of the surface energy and lattice contraction contribute to their superior stability.
引用
收藏
页码:1866 / 1878
页数:13
相关论文
共 49 条
[1]   Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals [J].
Akkerman, Quinten A. ;
Raino, Gabriele ;
Kovalenko, Maksym V. ;
Manna, Liberato .
NATURE MATERIALS, 2018, 17 (05) :394-405
[2]   Ligand Exchange and the Stoichiometry of Metal Chalcogenide Nanocrystals: Spectroscopic Observation of Facile Metal-Carboxylate Displacement and Binding [J].
Anderson, Nicholas C. ;
Hendricks, Mark P. ;
Choi, Joshua J. ;
Owen, Jonathan S. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (49) :18536-18548
[3]   Highly Luminescent Colloidal Nanoplates of Perovskite Cesium Lead Halide and Their Oriented Assemblies [J].
Bekenstein, Yehonadav ;
Koscher, Brent A. ;
Eaton, Samuel W. ;
Yang, Peidong ;
Alivisatos, A. Paul .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (51) :16008-16011
[4]   Graded Bandgap CsPbI2+xBr1-x Perovskite Solar Cells with a Stabilized Efficiency of 14.4% [J].
Bian, Hui ;
Bai, Dongliang ;
Jin, Zhiwen ;
Wang, Kang ;
Liang, Lei ;
Wang, Haoran ;
Zhang, Jingru ;
Wang, Qian ;
Liu, Shengzhong .
JOULE, 2018, 2 (08) :1500-1510
[5]  
Boles MA, 2016, NAT MATER, V15, P141, DOI [10.1038/NMAT4526, 10.1038/nmat4526]
[6]   Energy Level Modification in Lead Sulfide Quantum Dot Thin Films through Ligand Exchange [J].
Brown, Patrick R. ;
Kim, Donghun ;
Lunt, Richard R. ;
Zhao, Ni ;
Bawendi, Moungi G. ;
Grossman, Jeffrey C. ;
Bulovic, Vladimir .
ACS NANO, 2014, 8 (06) :5863-5872
[7]   Colloidal Quantum Dot Solar Cells [J].
Carey, Graham H. ;
Abdelhady, Ahmed L. ;
Ning, Zhijun ;
Thon, Susanna M. ;
Bakr, Osman M. ;
Sargent, Edward H. .
CHEMICAL REVIEWS, 2015, 115 (23) :12732-12763
[8]  
Carter C.B., 2007, SOLID STATE PHASE TR
[9]   Thermodynamics of Size Effect on Phase Transition Temperatures of Dispersed Phases [J].
Cui, Zi-Xiang ;
Zhao, Miao-Zhi ;
Lai, Wei-Peng ;
Xue, Yong-Qiang .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (46) :22796-22803
[10]   Highly Dynamic Ligand Binding and Light Absorption Coefficient of Cesium Lead Bromide Perovskite Nanocrystals [J].
De Roo, Jonathan ;
Ibanez, Maria ;
Geiregat, Pieter ;
Nedelcu, Georgian ;
Walravens, Willem ;
Maes, Jorick ;
Martins, Jose C. ;
Van Driessche, Isabel ;
Koyalenko, Maksym V. ;
Hens, Zeger .
ACS NANO, 2016, 10 (02) :2071-2081