Dynamic multi-swarm global particle swarm optimization

被引:18
|
作者
Xia, Xuewen [1 ,2 ]
Tang, Yichao [2 ]
Wei, Bo [2 ]
Zhang, Yinglong [1 ]
Gui, Ling [1 ]
Li, Xiong [2 ]
机构
[1] Minnan Normal Univ, Coll Phys & Informat Engn, Zhangzhou, Peoples R China
[2] East China Jiaotong Univ, Sch Software, Nanchang, Jiangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Particle swarm optimization; Dynamic multi-swarm strategy; Continuous optimization problems; ALGORITHM; PSO; TIME; ADAPTATION;
D O I
10.1007/s00607-019-00782-9
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
To satisfy the distinct requirements of different evolutionary stages, a dynamic multi-swarm global particle swarm optimization (DMS-GPSO) is proposed in this paper. In DMS-GPSO, the entire evolutionary process is segmented as an initial stage and a later stage. In the initial stage, the entire population is divided into a global sub-swarm and multiple dynamic multiple sub-swarms. During the evolutionary process, the global sub-swarm focuses on the exploitation under the guidance of the optimal particle in the entire population, while the dynamic multiple sub-swarms pour more attention on the exploration under the guidance of the neighbor's best-so-far position. Moreover, a store operator and a reset operator applied in the global sub-swarm are used to save computational resource and increase the population diversity, respectively. At the later stage, some elite particles stored in an archive are combined with the DMS sub-swarms as a single population to search for optimal solutions, intending to enhance the exploitation ability. The effect of the new introduced strategies is verified by extensive experiments. Besides, the comparison results among DMS-GPSO and other 9 peer algorithms on CEC2013 and CEC2017 test suites demonstrate that DMS-GPSO can effectively avoid the premature convergence when solving multimodal problems, and yield more favorable performance in complex problems.
引用
收藏
页码:1587 / 1626
页数:40
相关论文
共 50 条
  • [1] Dynamic Multi-swarm Global Particle Swarm Optimization
    Tang, Yichao
    Li, Xiong
    Zhang, Yinglong
    Xia, Xuewen
    Gui, Ling
    2019 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2019, : 1030 - 1037
  • [2] Dynamic Multi-Swarm Particle Swarm Optimization Based on Elite Learning
    Xia, Xuewen
    Tang, Yichao
    Wei, Bo
    Gui, Ling
    IEEE ACCESS, 2019, 7 : 184849 - 184865
  • [3] Dynamic multi-swarm global particle swarm optimization
    Xuewen Xia
    Yichao Tang
    Bo Wei
    Yinglong Zhang
    Ling Gui
    Xiong Li
    Computing, 2020, 102 : 1587 - 1626
  • [4] A Dynamic Multi-Swarm Particle Swarm Optimization With Global Detection Mechanism
    Wei B.
    Tang Y.
    Jin X.
    Jiang M.
    Ding Z.
    Huang Y.
    International Journal of Cognitive Informatics and Natural Intelligence, 2021, 15 (04)
  • [5] Dynamic Multi-swarm Particle Swarm Optimization Based on Mite Learning
    Tang, Yichao
    Wei, Bo
    Xia, Xuewen
    Gui, Ling
    2019 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2019), 2019, : 2311 - 2318
  • [6] A novel multi-swarm particle swarm optimization with dynamic learning strategy
    Ye, Wenxing
    Feng, Weiying
    Fan, Suohai
    APPLIED SOFT COMPUTING, 2017, 61 : 832 - 843
  • [7] Dynamic Multi-Swarm Fractional-best Particle Swarm Optimization for Dynamic Multi-modal Optimization
    Dennis, Simon
    Engelbrecht, Andries
    2020 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2020, : 1549 - 1556
  • [8] Dynamic Multi-swarm Particle Swarm Optimization with Center Learning Strategy
    Zhu, Zijian
    Zhong, Tian
    Wu, Chenhan
    Xue, Bowen
    ADVANCES IN SWARM INTELLIGENCE, ICSI 2022, PT I, 2022, : 141 - 147
  • [9] Fitness peak clustering based dynamic multi-swarm particle swarm optimization with enhanced learning strategy
    Tao, Xinmin
    Guo, Wenjie
    Li, Xiangke
    He, Qing
    Liu, Rui
    Zou, Junrong
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 191
  • [10] Applying Multi-Swarm Accelerating Particle Swarm Optimization to Dynamic Continuous Functions
    Jiang, Yi
    Huang, Wei
    Chen, Li
    WKDD: 2009 SECOND INTERNATIONAL WORKSHOP ON KNOWLEDGE DISCOVERY AND DATA MINING, PROCEEDINGS, 2009, : 710 - +