Cluster analysis for granular mechanics simulations using Machine Learning Algorithms

被引:0
作者
Rim, D. [1 ]
Millan, E. N. [1 ,2 ]
Planes, B. [2 ,3 ]
Bringa, E. M. [2 ,4 ]
Moyano, L. G. [2 ,5 ]
机构
[1] UNCuyo, Mendoza, Argentina
[2] Consejo Nacl Invest Cient & Tecn, Mendoza, Argentina
[3] Univ Mendoza, Mendoza, Argentina
[4] Univ Mendoza, CONICET, Mendoza, Argentina
[5] UNCuyo, Comis Nacl Energia Atom, Inst Balseiro, Mendoza, Argentina
来源
ENTRE CIENCIA E INGENIERIA | 2020年 / 14卷 / 28期
关键词
granular simulations; machine learning; classification analysis; performance analysis;
D O I
10.31908/19098367.2058
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Molecular Dynamics (MD) simulations on grain collisions allow to incorporate complex properties of dust interactions. We performed simulations of collisions of porous grains, each with many particles, using the MD software LAMMPS. The simulations consisted of a projectile grain striking a larger immobile target grain, with different impact velocities. The disadvantage of this method is the large computational cost due to a large number of particles being modeled. Machine Learning (ML) has the power to manipulate large data and build predictive models that could reduce MD simulation times. Using ML algorithms (Support Vector Machine and Random Forest), we are able to predict the outcome of MD simulations regarding fragment formation after a number of steps smaller than in usual MD simulations. We achieved a time reduction of at least 46%, for 90% accuracy. These results show that SVM and RF can be powerful yet simple tools to reduce computational cost in collision fragmentation simulations.
引用
收藏
页码:82 / 87
页数:6
相关论文
共 16 条
[1]   Dust-aggregate impact into granular matter: A systematic study of the influence of projectile velocity and size on crater formation and grain ejection [J].
Belen Planes, Maria ;
Millan, Emmanuel N. ;
Urbassek, Herbert M. ;
Bringa, Eduardo M. .
ASTRONOMY & ASTROPHYSICS, 2017, 607
[2]   Experiments on sticking, restructuring, and fragmentation of preplanetary dust aggregates [J].
Blum, J ;
Wurm, G .
ICARUS, 2000, 143 (01) :138-146
[3]   Adaptive machine learning framework to accelerate ab initio molecular dynamics [J].
Botu, Venkatesh ;
Ramprasad, Rampi .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2015, 115 (16) :1074-1083
[4]  
Ester M., 1996, KDD-96 Proceedings. Second International Conference on Knowledge Discovery and Data Mining, P226
[5]  
Glazer Dariya S, 2008, Pac Symp Biocomput, P332
[6]  
Kassambara A, 2017, STHDA, V1
[7]  
Lantz B., 2013, Machine Learning with R: Expert Techniques For Predictive Modeling
[8]  
Millan E. N., 2013, 6 LAT AM S HIGH PERF, P89
[9]  
Millan E. N., 2017, CLUSTER COMPUT
[10]  
Millan E. N., 2017, ACT ENIEF 2017 MEC C, VXXXV