Disorder-induced gap behavior in graphene nanoribbons

被引:167
作者
Gallagher, Patrick [1 ]
Todd, Kathryn [1 ]
Goldhaber-Gordon, David [1 ]
机构
[1] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevB.81.115409
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study the transport properties of graphene nanoribbons of standardized 30 nm width and varying lengths. We find that the extent of the gap observed in transport as a function of Fermi energy in these ribbons (the "transport gap") does not have a strong dependence on ribbon length, while the extent of the gap as a function of source-drain voltage (the "source-drain gap") increases with increasing ribbon length. We anneal the ribbons to reduce the amplitude of the disorder potential and find that the transport gap both shrinks and moves closer to zero gate voltage. In contrast, annealing does not systematically affect the source-drain gap. We conclude that the transport gap reflects the overall strength of the background disorder potential, while the source-drain gap is sensitively dependent on its details. Our results support the model that transport in graphene nanoribbons occurs through quantum dots forming along the ribbon due to a disorder potential induced by charged impurities.
引用
收藏
页数:8
相关论文
共 32 条
  • [1] A self-consistent theory for graphene transport
    Adam, Shaffique
    Hwang, E. H.
    Galitski, V. M.
    Das Sarma, S.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (47) : 18392 - 18397
  • [2] One-parameter scaling at the dirac point in graphene
    Bardarson, J. H.
    Tworzydlo, J.
    Brouwer, P. W.
    Beenakker, C. W. J.
    [J]. PHYSICAL REVIEW LETTERS, 2007, 99 (10)
  • [3] Ultrahigh electron mobility in suspended graphene
    Bolotin, K. I.
    Sikes, K. J.
    Jiang, Z.
    Klima, M.
    Fudenberg, G.
    Hone, J.
    Kim, P.
    Stormer, H. L.
    [J]. SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) : 351 - 355
  • [4] Electronic states of graphene nanoribbons studied with the Dirac equation
    Brey, L
    Fertig, HA
    [J]. PHYSICAL REVIEW B, 2006, 73 (23):
  • [5] Thermal stability studies of CVD-grown graphene nanoribbons: Defect annealing and loop formation
    Campos-Delgado, J.
    Kim, Y. A.
    Hayashi, T.
    Morelos-Gomez, A.
    Hofmann, M.
    Muramatsu, H.
    Endo, M.
    Terrones, H.
    Shull, R. D.
    Dresselhaus, M. S.
    Terrones, M.
    [J]. CHEMICAL PHYSICS LETTERS, 2009, 469 (1-3) : 177 - 182
  • [6] The electronic properties of graphene
    Castro Neto, A. H.
    Guinea, F.
    Peres, N. M. R.
    Novoselov, K. S.
    Geim, A. K.
    [J]. REVIEWS OF MODERN PHYSICS, 2009, 81 (01) : 109 - 162
  • [7] Charged-impurity scattering in graphene
    Chen, J. -H.
    Jang, C.
    Adam, S.
    Fuhrer, M. S.
    Williams, E. D.
    Ishigami, M.
    [J]. NATURE PHYSICS, 2008, 4 (05) : 377 - 381
  • [8] Intrinsic and extrinsic performance limits of graphene devices on SiO2
    Chen, Jian-Hao
    Jang, Chaun
    Xiao, Shudong
    Ishigami, Masa
    Fuhrer, Michael S.
    [J]. NATURE NANOTECHNOLOGY, 2008, 3 (04) : 206 - 209
  • [9] Graphene nano-ribbon electronics
    Chen, Zhihong
    Lin, Yu-Ming
    Rooks, Michael J.
    Avouris, Phaedon
    [J]. PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2007, 40 (02) : 228 - 232
  • [10] Control of Graphene's Properties by Reversible Hydrogenation: Evidence for Graphane
    Elias, D. C.
    Nair, R. R.
    Mohiuddin, T. M. G.
    Morozov, S. V.
    Blake, P.
    Halsall, M. P.
    Ferrari, A. C.
    Boukhvalov, D. W.
    Katsnelson, M. I.
    Geim, A. K.
    Novoselov, K. S.
    [J]. SCIENCE, 2009, 323 (5914) : 610 - 613