ON A POLYHARMONIC DIRICHLET PROBLEM AND BOUNDARY EFFECTS IN SURFACE SPLINE APPROXIMATION

被引:1
|
作者
Hangelbroek, Thomas C. [1 ]
机构
[1] Univ Hawaii, Dept Math, Honolulu, HI 96822 USA
基金
美国国家科学基金会;
关键词
surface spline; layer potential; polyharmonic; extension operator; Dirichlet problem; RADIAL-BASIS FUNCTIONS; PARTIAL DIFFERENTIAL EQUATIONS; SCATTERED DATA INTERPOLATION; LIPSCHITZ-DOMAINS; ERROR; ORDER; SPACES; BESOV;
D O I
10.1137/18M1167188
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For compact domains with smooth boundaries, we present a surface spline approximation scheme that delivers rates in L-p that are optimal for linear approximation in this setting. This scheme can overcome the boundary effects, observed by Johnson [Constr. Approx., 14 (1998), pp. 429-438], by placing centers with greater density near the boundary. It owes its success to an integral identity employing a minimal number of boundary layer potentials, which, in turn, is derived from the boundary layer potential solution to the Dirichlet problem for the m-fold Laplacian. Furthermore, this integral identity is shown to be the "native space extension" of the target function.
引用
收藏
页码:4616 / 4654
页数:39
相关论文
共 50 条
  • [1] A Dirichlet problem for polyharmonic functions
    Heinrich Begehr
    Jinyuan Du
    Yufeng Wang
    Annali di Matematica Pura ed Applicata, 2008, 187 : 435 - 457
  • [2] A Dirichlet problem for polyharmonic functions
    Begehr, Heinrich
    Du, Jinyuan
    Wang, Yufeng
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2008, 187 (03) : 435 - 457
  • [3] The polyharmonic Dirichlet problem and path counting
    Hangelbroek, Thomas
    Lauve, Aaron
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2014, 102 (03): : 449 - 481
  • [4] Dirichlet problem for inhomogeneous polyharmonic equation
    Kumar, Ajay
    Prakash, Ravi
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2008, 53 (07) : 643 - 651
  • [5] Polyharmonic Dirichlet problem on the Heisenberg group
    Kumar, Ajay
    Mishra, Mukund Madhav
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2008, 53 (12) : 1103 - 1110
  • [6] An inhomogeneous polyharmonic Dirichlet problem with Lp boundary data in the upper half-plane
    Du, Zhihua
    Guo, Guoan
    Pan, Kanda
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2017, 62 (10) : 1519 - 1540
  • [7] Solution to the Dirichlet Problem for the Polyharmonic Equation in the Ball
    Karachik V.V.
    Siberian Advances in Mathematics, 2022, 32 (3) : 197 - 210
  • [8] A Dirichlet type problem for complex polyharmonic functions
    Grzebula, H.
    Michalik, S.
    ACTA MATHEMATICA HUNGARICA, 2017, 153 (01) : 216 - 229
  • [9] A Dirichlet type problem for complex polyharmonic functions
    H. Grzebuła
    S. Michalik
    Acta Mathematica Hungarica, 2017, 153 : 216 - 229
  • [10] Green Function of the Dirichlet Boundary Value Problem for Polyharmonic Equation in a Ball Under Polynomial Data
    Karachik, V. V.
    IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA, 2014, 14 (04): : 550 - 558