Isomorphism Testing for Graphs Excluding Small Minors

被引:6
作者
Grohe, Martin [1 ]
Wiebking, Daniel [1 ]
Neuen, Daniel [2 ]
机构
[1] Rhein Westfal TH Aachen, Aachen, Germany
[2] CISPA Helmholtz Ctr Informat Secur, Saarbrucken, Germany
来源
2020 IEEE 61ST ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2020) | 2020年
关键词
graph isomorphism problem; excluded minors; structure of automorphism group; BOUNDED VALENCE; NUMBER;
D O I
10.1109/FOCS46700.2020.00064
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We prove that there is a graph isomorphism test running in time n(polylog(h)) on n-vertex graphs excluding some h-vertex graph as a minor. Previously known bounds were n(poly(h)) (Ponomarenko, 1988) and n(polylog(n)) (Babai, STOC 2016). For the algorithm we combine recent advances in the group-theoretic graph isomorphism machinery with new graph-theoretic arguments.
引用
收藏
页码:625 / 636
页数:12
相关论文
共 33 条
  • [1] Babai L., 1983, 24th Annual Symposium on Foundations of Computer Science, P162, DOI 10.1109/SFCS.1983.10
  • [2] ON THE ORDERS OF PRIMITIVE GROUPS WITH RESTRICTED NON-ABELIAN COMPOSITION FACTORS
    BABAI, L
    CAMERON, PJ
    PALFY, PP
    [J]. JOURNAL OF ALGEBRA, 1982, 79 (01) : 161 - 168
  • [3] BABAI L., 1981, LONDON MATH SOC LECT, V52, P1
  • [4] Graph Isomorphism in Quasipolynomial Time [Extended Abstract]
    Babai, Laszlo
    [J]. STOC'16: PROCEEDINGS OF THE 48TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING, 2016, : 684 - 697
  • [5] Tight Lower and Upper Bounds for the Complexity of Canonical Colour Refinement
    Berkholz, Christoph
    Bonsma, Paul
    Grohe, Martin
    [J]. THEORY OF COMPUTING SYSTEMS, 2017, 60 (04) : 581 - 614
  • [6] AN OPTIMAL LOWER BOUND ON THE NUMBER OF VARIABLES FOR GRAPH IDENTIFICATION
    CAI, JY
    FURER, M
    IMMERMAN, N
    [J]. COMBINATORICA, 1992, 12 (04) : 389 - 410
  • [7] Dixon J.D., 1996, Graduate Texts in Mathematics
  • [8] Filotti I.S, 1980, STOC
  • [9] Grohe M, 2020, ABS200407671 CORR
  • [10] An Improved Isomorphism Test for Bounded-tree-width Graphs
    Grohe, Martin
    Neuen, Daniel
    Schweitzer, Pascal
    Wiebking, Daniel
    [J]. ACM TRANSACTIONS ON ALGORITHMS, 2020, 16 (03)