Unsupervised machine learning improves risk stratification in newly diagnosed multiple myeloma: an analysis of the Spanish Myeloma Group

被引:9
作者
Mosquera Orgueira, Adrian [1 ]
Gonzalez Perez, Marta Sonia [1 ]
Diaz Arias, Jose [1 ]
Rosinol, Laura [2 ]
Oriol, Albert [3 ]
Teruel, Ana Isabel [4 ]
Martinez Lopez, Joaquin [5 ]
Palomera, Luis [6 ]
Granell, Miguel [7 ]
Blanchard, Maria Jesus [8 ]
de la Rubia, Javier [9 ]
Lopez de la Guia, Ana [10 ]
Rios, Rafael [11 ]
Sureda, Anna [12 ]
Hernandez, Miguel Teodoro [13 ]
Bengoechea, Enrique [14 ]
Calasanz, Maria Jose [15 ]
Gutierrez, Norma
Martin, Maria Luis [5 ]
Blade, Joan [2 ]
Lahuerta, Juan-Jose [5 ]
San Miguel, Jesus [15 ]
Mateos, Maria Victoria [16 ]
机构
[1] Hosp Clin Univ Santiago Compostela, La Coruna, Spain
[2] Inst Invest Biomed August Pi i Sunyer, Hosp Clin, Barcelona, Spain
[3] Hosp Germans Trias i Pujol, Inst Josep Carreras, Inst Catala Oncol, Badalona, Spain
[4] Hosp Clin Valencia, Valencia, Spain
[5] Univ Complutense Madrid, CNIO, Hosp Univ 12 Octubre, Madrid, Spain
[6] Hosp Clin Lozano Blesa, Zaragoza, Spain
[7] Hosp Santa Creu & Sant Pau, Barcelona, Spain
[8] Hosp Ramon & Cajal, Madrid, Spain
[9] Hosp Doctor Peset, Valencia, Spain
[10] Hosp Univ La Paz, Madrid, Spain
[11] Hosp Virgen Nieves, CIBERESP, Ibs, Granada, Spain
[12] Univ Barcelona, IDIBELL, Inst Catala Oncol Hosp, Barcelona, Spain
[13] Hosp Univ Canarias, Santa Cruz De Tenerife, Spain
[14] Hosp Donostia, San Sebastian, Spain
[15] Clin Univ Navarra, CIMA, CIBERONC, IDISNA, Pamplona, Spain
[16] Univ Salamanca, Hosp Univ Salamanca, Inst Invest Biomed Salamanca, Inst Biol Mol & Celular Canc,CSIC,CIBERONC, Salamanca, Spain
关键词
INTERNATIONAL STAGING SYSTEM; INDUCTION; THERAPY;
D O I
10.1038/s41408-022-00647-z
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
The International Staging System (ISS) and the Revised International Staging System (R-ISS) are commonly used prognostic scores in multiple myeloma (MM). These methods have significant gaps, particularly among intermediate-risk groups. The aim of this study was to improve risk stratification in newly diagnosed MM patients using data from three different trials developed by the Spanish Myeloma Group. For this, we applied an unsupervised machine learning clusterization technique on a set of clinical, biochemical and cytogenetic variables, and we identified two novel clusters of patients with significantly different survival. The prognostic precision of this clusterization was superior to those of ISS and R-ISS scores, and appeared to be particularly useful to improve risk stratification among R-ISS 2 patients. Additionally, patients assigned to the low-risk cluster in the GEM05 over 65 years trial had a significant survival benefit when treated with VMP as compared with VTD. In conclusion, we describe a simple prognostic model for newly diagnosed MM whose predictions are independent of the ISS and R-ISS scores. Notably, the model is particularly useful in order to re-classify R-ISS score 2 patients in 2 different prognostic subgroups. The combination of ISS, R-ISS and unsupervised machine learning clusterization brings a promising approximation to improve MM risk stratification.
引用
收藏
页数:9
相关论文
共 50 条
[21]   The role of carfilzomib in treatment of newly diagnosed multiple myeloma [J].
Strifler, Susanne ;
Knop, Stefan .
FUTURE ONCOLOGY, 2018, 14 (30) :3123-3134
[22]   Current approaches to management of newly diagnosed multiple myeloma [J].
Goel, Utkarsh ;
Usmani, Saad ;
Kumar, Shaji .
AMERICAN JOURNAL OF HEMATOLOGY, 2022, 97 :S3-S25
[23]   HEMATOLOGY Setting the standard for newly diagnosed multiple myeloma [J].
Laubach, Jacob ;
Richardson, Paul G. ;
Anderson, Kenneth .
NATURE REVIEWS CLINICAL ONCOLOGY, 2011, 8 (05) :255-256
[24]   Recent trends in the management of newly diagnosed multiple myeloma [J].
Reece, Donna E. .
CURRENT OPINION IN HEMATOLOGY, 2009, 16 (04) :306-312
[25]   Frontline therapy for newly diagnosed patients with multiple myeloma [J].
Jung, Sung-Hoon ;
Jo, Jae-Cheol ;
Song, Ga-Young ;
Ahn, Seo-Yeon ;
Yang, Deok-Hwan ;
Ahn, Jae-Sook ;
Kim, Hyeoung-Joon ;
Lee, Je-Jung .
BLOOD RESEARCH, 2020, 55 :37-42
[26]   A high-risk, Double-Hit, group of newly diagnosed myeloma identified by genomic analysis [J].
Walker, Brian A. ;
Mavrommatis, Konstantinos ;
Wardell, Christopher P. ;
Ashby, T. Cody ;
Bauer, Michael ;
Davies, Faith ;
Rosenthal, Adam ;
Wang, Hongwei ;
Qu, Pingping ;
Hoering, Antje ;
Samur, Mehmet ;
Towfic, Fadi ;
Ortiz, Maria ;
Flynt, Erin ;
Yu, Zhinuan ;
Yang, Zhihong ;
Rozelle, Dan ;
Obenauer, John ;
Trotter, Matthew ;
Auclair, Daniel ;
Keats, Jonathan ;
Bolli, Niccolo ;
Fulciniti, Mariateresa ;
Szalat, Raphael ;
Moreau, Phillipe ;
Durie, Brian ;
Stewart, A. Keith ;
Goldschmidt, Hartmut ;
Raab, Marc S. ;
Einsele, Hermann ;
Sonneveld, Pieter ;
San Miguel, Jesus ;
Lonial, Sagar ;
Jackson, Graham H. ;
Anderson, Kenneth C. ;
Avet-Loiseau, Herve ;
Munshi, Nikhil ;
Thakurta, Anjan ;
Morgan, Gareth .
LEUKEMIA, 2019, 33 (01) :159-170
[27]   IMWG consensus on risk stratification in multiple myeloma [J].
Chng, W. J. ;
Dispenzieri, A. ;
Chim, C-S ;
Fonseca, R. ;
Goldschmidt, H. ;
Lentzsch, S. ;
Munshi, N. ;
Palumbo, A. ;
Miguel, J. S. ;
Sonneveld, P. ;
Cavo, M. ;
Usmani, S. ;
Durie, B. G. M. ;
Avet-Loiseau, H. .
LEUKEMIA, 2014, 28 (02) :269-277
[28]   Risk Stratification in Multiple Myeloma in Indian Settings [J].
Kapoor, Rajan ;
Kumar, Rajiv ;
Dubey, A. P. .
INDIAN JOURNAL OF HEMATOLOGY AND BLOOD TRANSFUSION, 2020, 36 (03) :464-472
[29]   Risk stratification in multiple myeloma: Are we there yet? [J].
Mohan, Meera ;
Schinke, Carolina .
BRITISH JOURNAL OF HAEMATOLOGY, 2024, 204 (05) :1585-1587
[30]   Risk Stratification Before and During Treatment in Newly Diagnosed Multiple Myeloma: From Clinical Trials to the Real-World Setting [J].
Bonello, Francesca ;
Cani, Lorenzo ;
D'Agostino, Mattia .
FRONTIERS IN ONCOLOGY, 2022, 12