Unsupervised machine learning improves risk stratification in newly diagnosed multiple myeloma: an analysis of the Spanish Myeloma Group

被引:9
|
作者
Mosquera Orgueira, Adrian [1 ]
Gonzalez Perez, Marta Sonia [1 ]
Diaz Arias, Jose [1 ]
Rosinol, Laura [2 ]
Oriol, Albert [3 ]
Teruel, Ana Isabel [4 ]
Martinez Lopez, Joaquin [5 ]
Palomera, Luis [6 ]
Granell, Miguel [7 ]
Blanchard, Maria Jesus [8 ]
de la Rubia, Javier [9 ]
Lopez de la Guia, Ana [10 ]
Rios, Rafael [11 ]
Sureda, Anna [12 ]
Hernandez, Miguel Teodoro [13 ]
Bengoechea, Enrique [14 ]
Calasanz, Maria Jose [15 ]
Gutierrez, Norma
Martin, Maria Luis [5 ]
Blade, Joan [2 ]
Lahuerta, Juan-Jose [5 ]
San Miguel, Jesus [15 ]
Mateos, Maria Victoria [16 ]
机构
[1] Hosp Clin Univ Santiago Compostela, La Coruna, Spain
[2] Inst Invest Biomed August Pi i Sunyer, Hosp Clin, Barcelona, Spain
[3] Hosp Germans Trias i Pujol, Inst Josep Carreras, Inst Catala Oncol, Badalona, Spain
[4] Hosp Clin Valencia, Valencia, Spain
[5] Univ Complutense Madrid, CNIO, Hosp Univ 12 Octubre, Madrid, Spain
[6] Hosp Clin Lozano Blesa, Zaragoza, Spain
[7] Hosp Santa Creu & Sant Pau, Barcelona, Spain
[8] Hosp Ramon & Cajal, Madrid, Spain
[9] Hosp Doctor Peset, Valencia, Spain
[10] Hosp Univ La Paz, Madrid, Spain
[11] Hosp Virgen Nieves, CIBERESP, Ibs, Granada, Spain
[12] Univ Barcelona, IDIBELL, Inst Catala Oncol Hosp, Barcelona, Spain
[13] Hosp Univ Canarias, Santa Cruz De Tenerife, Spain
[14] Hosp Donostia, San Sebastian, Spain
[15] Clin Univ Navarra, CIMA, CIBERONC, IDISNA, Pamplona, Spain
[16] Univ Salamanca, Hosp Univ Salamanca, Inst Invest Biomed Salamanca, Inst Biol Mol & Celular Canc,CSIC,CIBERONC, Salamanca, Spain
关键词
INTERNATIONAL STAGING SYSTEM; INDUCTION; THERAPY;
D O I
10.1038/s41408-022-00647-z
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
The International Staging System (ISS) and the Revised International Staging System (R-ISS) are commonly used prognostic scores in multiple myeloma (MM). These methods have significant gaps, particularly among intermediate-risk groups. The aim of this study was to improve risk stratification in newly diagnosed MM patients using data from three different trials developed by the Spanish Myeloma Group. For this, we applied an unsupervised machine learning clusterization technique on a set of clinical, biochemical and cytogenetic variables, and we identified two novel clusters of patients with significantly different survival. The prognostic precision of this clusterization was superior to those of ISS and R-ISS scores, and appeared to be particularly useful to improve risk stratification among R-ISS 2 patients. Additionally, patients assigned to the low-risk cluster in the GEM05 over 65 years trial had a significant survival benefit when treated with VMP as compared with VTD. In conclusion, we describe a simple prognostic model for newly diagnosed MM whose predictions are independent of the ISS and R-ISS scores. Notably, the model is particularly useful in order to re-classify R-ISS score 2 patients in 2 different prognostic subgroups. The combination of ISS, R-ISS and unsupervised machine learning clusterization brings a promising approximation to improve MM risk stratification.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Unsupervised machine learning improves risk stratification in newly diagnosed multiple myeloma: an analysis of the Spanish Myeloma Group
    Adrian Mosquera Orgueira
    Marta Sonia González Pérez
    Jose Diaz Arias
    Laura Rosiñol
    Albert Oriol
    Ana Isabel Teruel
    Joaquin Martinez Lopez
    Luis Palomera
    Miguel Granell
    Maria Jesus Blanchard
    Javier de la Rubia
    Ana López de la Guia
    Rafael Rios
    Anna Sureda
    Miguel Teodoro Hernandez
    Enrique Bengoechea
    María José Calasanz
    Norma Gutierrez
    Maria Luis Martin
    Joan Blade
    Juan-Jose Lahuerta
    Jesús San Miguel
    Maria Victoria Mateos
    Blood Cancer Journal, 12
  • [2] Machine learning assisted risk stratification of newly diagnosed multiple myeloma with respect to the VRd treatment
    Koo, Jamin
    Choi, Gyucheol
    Park, Sung-Soo
    Byun, Ja Min
    Lim, Sungwon
    Lee, Jong Cheol
    CLINICAL LYMPHOMA MYELOMA & LEUKEMIA, 2023, 23 : S100 - S101
  • [3] Individualized risk stratification in newly diagnosed multiple myeloma
    Rajanna, Arjun Raj
    Maura, Francesco
    Derkach, Andriy
    Ziccheddu, Bachisio
    Weinhold, Niels
    Maclachlan, Kylee
    Diamond, Benjamin
    Davies, Faith
    Boyle, Eileen
    Walker, Brian
    Pos, Alexandra
    Hulcrantz, Malin
    Silva, Ariosto
    Hampton, Oliver
    Teer, Jamie K.
    Bolli, Niccolo
    Jackson, Graham
    Kaiser, Martin
    Pawlyn, Charlotte
    Cook, Gordon
    Verducci, Dennis
    Kazandjian, Dickran
    Van Rhee, Fritz
    Usmani, Saad
    Shain, Kenneth H.
    Raab, Marc S.
    Morgan, Gareth
    Landgren, Ola
    CANCER RESEARCH, 2023, 83 (07)
  • [4] Update on risk stratification and treatment of newly diagnosed multiple myeloma
    Prashant Kapoor
    S. Vincent Rajkumar
    International Journal of Hematology, 2011, 94 : 310 - 320
  • [5] Management of Newly Diagnosed Multiple Myeloma Based on Risk Stratification
    Callander, Natalie S.
    JOURNAL OF THE NATIONAL COMPREHENSIVE CANCER NETWORK, 2023, 21 : 17 - 19
  • [6] Update on risk stratification and treatment of newly diagnosed multiple myeloma
    Kapoor, Prashant
    Rajkumar, S. Vincent
    INTERNATIONAL JOURNAL OF HEMATOLOGY, 2011, 94 (04) : 310 - 320
  • [7] Metaphase Cytogenetics for Risk Stratification in Newly Diagnosed Multiple Myeloma
    Mellors, Patrick
    Binder, Moritz
    Ketterling, Rhett P.
    Griepp, Patricia
    Baughn, Linda B.
    Buadi, Francis K.
    Lacy, Martha Q.
    Gertz, Morie A.
    Dispenzieri, Angela
    Haymann, Suzanne
    Kapoor, Prashant
    Gonsalves, Wilson I.
    Hwa, Yi Lisa
    Fonder, Amie
    Hobbs, Miriam A.
    Kourelis, Taxiarchis
    Warsame, Rahma M.
    Lust, John A.
    Leung, Nelson
    Go, Ronald S.
    Kyle, Robert A.
    Rajkumar, S. Vincent
    Kumar, Shaji K.
    BLOOD, 2019, 134
  • [8] Supervised Machine Learning Improves Risk Stratification in Newly Diagnosed Myelodysplastic Syndromes: An Analysis of the Spanish Group of Myelodysplastic Syndromes
    Mosquera Orgueira, Adrian
    Perez Encinas, Manuel
    Diaz Varela, Nicolas A.
    Mora, Elvira
    Diaz-Beya, Marina
    Julia Montoro, Maria
    Pomares, Helena
    Ramos, Fernando
    Tormo, Mar
    Jerez, Andres
    Nomdedeu, Josep F.
    De Miguel Sanchez, Carlos
    Leonor, Arenillas
    Carcel, Paula
    Cedena Romero, Maria Teresa
    Xicoy, Blanca
    Rivero, Eugenia
    del Orbe Barreto, Rafael Andres
    Diez-Campelo, Maria
    Benlloch, Luis E.
    Crucitti, Davide
    Valcarcel, David
    BLOOD, 2022, 140 : 1132 - 1134
  • [9] Development of a Clinical Risk Stratification for Patients with Newly Diagnosed Multiple Myeloma
    Mao, Xuehan
    Xu, Yan
    Yan, Yuting
    Liu, Jiahui
    Fan, Huishou
    Sui, Weiwei
    Deng, Shuhui
    Li, Zengjun
    Qiu, Lugui
    An, Gang
    BLOOD, 2019, 134
  • [10] Individualized Treatment-Adjusted Risk Stratification in Newly Diagnosed Multiple Myeloma
    Maura, Francesco
    Rajanna, Arjun Raj
    Derkach, Andriy
    Ziccheddu, Bachisio
    Weinhold, Niels
    Maclachlan, Kylee H.
    Diamond, Benjamin
    Davies, Faith E.
    Boyle, Eileen
    Walker, Brian A.
    Poos, Alexandra M.
    Hultcrantz, Malin
    Silva, Ariosto Siqueira
    Hampton, Oliver
    Teer, Jamie
    Bolli, Niccolo
    Jackson, Graham
    Kaiser, Martin F.
    Pawlyn, Charlotte
    Cook, Gordon
    Verducci, Dennis
    Kazandjian, Dickran
    van Rhee, Frits
    Usmani, Saad
    Shain, Ken H.
    Raab, Marc S.
    Morgan, Gareth J.
    Landgren, Ola
    BLOOD, 2022, 140 : 1561 - 1563