Multiresolution circular harmonic decomposition

被引:63
作者
Jacovitti, G
Neri, A
机构
[1] Univ Rome La Sapienza, INFOCOM Dept, Rome, Italy
[2] Univ Roma Tre, Dept Elect Engn, Rome, Italy
关键词
circular harmonic wavelets; complex multiscale representation; self-steerable pyramid;
D O I
10.1109/78.875481
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A dictionary of complex waveforms suited for multiresolution analysis and individually steerable by multiplication by a complex factor is presented. It is based on circular harmonic wavelets (CHW) and is useful for pattern analysis under rotations. The main theoretical aspects of CHWs are illustrated, and an example of application to motion estimation is provided.
引用
收藏
页码:3242 / 3247
页数:6
相关论文
共 13 条
  • [1] PROPERTIES OF THE CIRCULAR HARMONIC EXPANSION FOR ROTATION-INVARIANT PATTERN-RECOGNITION
    ARSENAULT, HH
    SHENG, YL
    [J]. APPLIED OPTICS, 1986, 25 (18): : 3225 - 3229
  • [2] BIGUN J, 1986, SIGNAL PROCESS, V3, P883
  • [3] Deans S., 1983, RADON TRANSFORM SOME
  • [4] THE DESIGN AND USE OF STEERABLE FILTERS
    FREEMAN, WT
    ADELSON, EH
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1991, 13 (09) : 891 - 906
  • [5] Hypercomplete circular harmonic pyramids
    Jacovitti, G
    Manca, K
    Neri, K
    [J]. WAVELET APPLICATIONS IN SIGNAL AND IMAGE PROCESSING IV, PTS 1 AND 2, 1996, 2825 : 352 - 363
  • [6] JACOVITTI G, 1995, P SOC PHOTO-OPT INS, V2569, P363, DOI 10.1117/12.217592
  • [7] CHARACTERIZATION OF SIGNALS FROM MULTISCALE EDGES
    MALLAT, S
    ZHONG, S
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1992, 14 (07) : 710 - 732
  • [8] Martinez ME, 1997, CANCER EPIDEM BIOMAR, V6, P1
  • [9] Press W. H., 1989, Numerical Recipes, V1st
  • [10] REED IS, 1959, IRE T INFORM THEORY, V8, P102