The emergence of proteinase-activated receptor-2 as a novel target for the treatment of inflammation-related CNS disorders

被引:38
作者
Bushell, Trevor [1 ]
机构
[1] Univ Strathclyde, Inst Pharm & Biomed Sci, Glasgow G4 0NR, Lanark, Scotland
来源
JOURNAL OF PHYSIOLOGY-LONDON | 2007年 / 581卷 / 01期
关键词
D O I
10.1113/jphysiol.2007.129577
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The signalling molecules that are involved in inflammatory pathways are now thought to play a part in many disorders of the central nervous system (CNS). In common with peripheral chronic inflammatory diseases such a rheumatoid arthritis and ulcerative colitis, evidence now exists for the involvement of inflammatory cytokines, for example tumour necrosis factor (TNF) and interleukins (11), in neurological disorders. A common factor observed with the up-regulation of these cytokines in peripheral inflammatory diseases, is the increased expression of the proteinase-activated receptor (PAR) subtype PAR-2. Indeed, recent evidence suggests that targeting PAR-2 helps reduce joint swelling observed in animal models of arthritis. So could targeting this receptor prove to be useful in treating those CNS disorders where inflammatory processes are thought to play an intrinsic role? The aim of this review is to summarize the emerging data regarding the role of PAR-2 in neuroinflammation and ischaernic injury and discuss its potential as an exciting new target for the prevention and/or treatment of CNS disorders.
引用
收藏
页码:7 / 16
页数:10
相关论文
共 115 条
[1]   Pathogenesis of cognitive decline following therapeutic irradiation for head and neck tumors [J].
Abayomi, OK .
ACTA ONCOLOGICA, 2002, 41 (04) :346-351
[2]   DETECTION OF FUNCTIONAL RECEPTORS FOR THE PROTEINASE-ACTIVATED-RECEPTOR-2-ACTIVATING POLYPEPTIDE, SLIGRL-NH2, IN RAT VASCULAR AND GASTRIC SMOOTH-MUSCLE [J].
ALANI, B ;
SAIFEDDINE, M ;
HOLLENBERG, MD .
CANADIAN JOURNAL OF PHYSIOLOGY AND PHARMACOLOGY, 1995, 73 (08) :1203-1207
[3]   Protease-activated receptor 2 sensitizes the capsaicin receptor transient receptor potential vanilloid receptor 1 to induce hyperalgesia [J].
Amadesi, S ;
Nie, JJ ;
Vergnolle, N ;
Cottrell, GS ;
Grady, EF ;
Trevisani, M ;
Manni, C ;
Geppetti, P ;
McRoberts, JA ;
Ennes, H ;
Davis, B ;
Mayer, EA ;
Bunnett, NW .
JOURNAL OF NEUROSCIENCE, 2004, 24 (18) :4300-4312
[4]   Protease-activated receptor 2 sensitizes TRPV1 by protein kinase Cε- and A-dependent mechanisms in rats and mice [J].
Amadesi, Silvia ;
Cottrell, Graeme S. ;
Divino, Lorna ;
Chapman, Kevin ;
Grady, Eileen F. ;
Bautista, Francisco ;
Karanjia, Rustum ;
Barajas-Lopez, Carlos ;
Vanner, Stephen ;
Vergnolle, Nathalie ;
Bunnett, Nigel W. .
JOURNAL OF PHYSIOLOGY-LONDON, 2006, 575 (02) :555-571
[5]   Activation of protease-activated receptor (PAR)-1, PAR-2, and PAR-4 stimulates IL-6, IL-8, and prostaglandin E2 release from human respiratory epithelial cells [J].
Asokananthan, N ;
Graham, PT ;
Fink, J ;
Knight, DA ;
Bakker, AJ ;
McWilliam, AS ;
Thompson, PJ ;
Stewart, GA .
JOURNAL OF IMMUNOLOGY, 2002, 168 (07) :3577-3585
[6]   THROMBIN STIMULATES INOSITOL PHOSPHATE PRODUCTION AND INTRACELLULAR FREE CALCIUM BY A PERTUSSIS TOXIN-INSENSITIVE MECHANISM IN OSTEOSARCOMA CELLS [J].
BABICH, M ;
KING, KL ;
NISSENSON, RA .
ENDOCRINOLOGY, 1990, 126 (02) :948-954
[7]   TUMOR-NECROSIS-FACTOR-ALPHA AND TUMOR-NECROSIS-FACTOR-BETA PROTECT NEURONS AGAINST AMYLOID BETA-PEPTIDE TOXICITY - EVIDENCE FOR INVOLVEMENT OF A KAPPA-B-BINDING FACTOR AND ATTENUATION OF PEROXIDE AND CA2+ ACCUMULATION [J].
BARGER, SW ;
HORSTER, D ;
FURUKAWA, K ;
GOODMAN, Y ;
KRIEGLSTEIN, J ;
MATTSON, MP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (20) :9328-9332
[8]   Relapsing and remitting multiple sclerosis: Pathology of the newly forming lesion [J].
Barnett, MH ;
Prineas, JW .
ANNALS OF NEUROLOGY, 2004, 55 (04) :458-468
[9]   Trypsin stimulates proteinase-activated receptor-2-dependent and -independent activation of mitogen-activated protein kinases [J].
Belham, CL ;
Tate, RJ ;
Scott, PH ;
Pemberton, AD ;
Miller, HRP ;
Wadsworth, RM ;
Gould, GW ;
Plevin, R .
BIOCHEMICAL JOURNAL, 1996, 320 :939-946
[10]   Microglial control of neuronal death and synaptic properties [J].
Bessis, Alain ;
Bechade, Catherine ;
Bernard, Delphine ;
Roumier, Anne .
GLIA, 2007, 55 (03) :233-238