Parameter estimation from interval-valued data using the expectation-maximization algorithm

被引:13
作者
Su, Zhi-Gang [1 ]
Wang, Pei-Hong [1 ]
Li, Yi-Guo [1 ]
Zhou, Ze-Kun [1 ]
机构
[1] Southeast Univ, Key Lab Energy Thermal Convers & Control, Minist Educ, Sch Energy & Environm, Nanjing 210096, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
generalized likelihood function; interval-valued data; maximum likelihood estimation; EM algorithm; regression analysis; MAXIMUM-LIKELIHOOD; REGRESSION; MODELS;
D O I
10.1080/00949655.2013.822870
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper investigates on the problem of parameter estimation in statistical model when observations are intervals assumed to be related to underlying crisp realizations of a random sample. The proposed approach relies on the extension of likelihood function in interval setting. A maximum likelihood estimate of the parameter of interest may then be defined as a crisp value maximizing the generalized likelihood function. Using the expectation-maximization (EM) to solve such maximizing problem therefore derives the so-called interval-valued EM algorithm (IEM), which makes it possible to solve a wide range of statistical problems involving interval-valued data. To show the performance of IEM, the following two classical problems are illustrated: univariate normal mean and variance estimation from interval-valued samples, and multiple linear/nonlinear regression with crisp inputs and interval output.
引用
收藏
页码:320 / 338
页数:19
相关论文
共 50 条
  • [41] Using Regularization to Identify Measurement Bias Across Multiple Background Characteristics: A Penalized Expectation-Maximization Algorithm
    Belzak, William C. M.
    Bauer, Daniel J.
    JOURNAL OF EDUCATIONAL AND BEHAVIORAL STATISTICS, 2024, 49 (06) : 976 - 1012
  • [42] Classification of disease recurrence using transition likelihoods with expectation-maximization algorithm
    Jiang, Huijun
    Li, Quefeng
    Lin, Jessica T.
    Lin, Feng-Chang
    STATISTICS IN MEDICINE, 2022, 41 (23) : 4697 - 4715
  • [43] Multi-frame image fusion using the expectation-maximization algorithm
    Yang, JZ
    Blum, RS
    2005 7th International Conference on Information Fusion (FUSION), Vols 1 and 2, 2005, : 469 - 474
  • [44] An Expectation-Maximization Algorithm for Blind Separation of Noisy Mixtures Using Gaussian Mixture Model
    Gu, Fanglin
    Zhang, Hang
    Wang, Wenwu
    Wang, Shan
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2017, 36 (07) : 2697 - 2726
  • [45] Identification of Thermal Model of Power Module Using Expectation-Maximization Algorithm
    Sevcik, Jakub
    Smidl, Vaclav
    Votava, Martin
    45TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY (IECON 2019), 2019, : 119 - 125
  • [46] An Expectation Maximization algorithm for fitting the generalized odds-rate model to interval censored data
    Zhou, Jie
    Zhang, Jiajia
    Lu, Wenbin
    STATISTICS IN MEDICINE, 2017, 36 (07) : 1157 - 1171
  • [47] Estimation of physical parameters under location uncertainty using an ensemble2- expectation-maximization algorithm
    Yang, Yin
    Memin, Etienne
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2019, 145 (719) : 418 - 433
  • [48] Model error covariance estimation in particle and ensemble Kalman filters using an online expectation-maximization algorithm
    Cocucci, Tadeo J.
    Pulido, Manuel
    Lucini, Magdalena
    Tandeo, Pierre
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2021, 147 (734) : 526 - 543
  • [49] A clusterwise nonlinear regression algorithm for interval-valued data
    de Carvalho, Francisco de A. T.
    Lima Neto, Eufrasio de A.
    da Silva, Kassio C. F.
    INFORMATION SCIENCES, 2021, 555 : 357 - 385
  • [50] A stochastic expectation-maximization algorithm for the analysis of system lifetime data with known signature
    Yandan Yang
    Hon Keung Tony Ng
    Narayanaswamy Balakrishnan
    Computational Statistics, 2016, 31 : 609 - 641