ERROR ESTIMATES OF MORLEY TRIANGULAR ELEMENT SATISFYING THE MAXIMAL ANGLE CONDITION

被引:0
|
作者
Mao, Shipeng [1 ]
Nicaise, Serge [2 ]
Shi, Zhong-Ci [1 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, LSEC, Beijing 100190, Peoples R China
[2] Univ Valenciennes & Hainaut Cambresis, LAMAV, ISTV, F-59313 Valenciennes 9, France
关键词
Morley element; plate elements; plate bending problems; maximal angle condition; PLATE-BENDING PROBLEMS; ANISOTROPIC MESHES; FINITE-ELEMENTS; ELLIPTIC PROBLEMS; INTERPOLATION; DOMAINS; CONVERGENCE; EQUATIONS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish the convergence of a nonconforming triangular Morley element for the plate bending problem on degenerate meshes. An explicit bound for the interpolation error is derived for arbitrary triangular meshes without any assumptions. The optimal convergence rates of the moment error and rotation error are derived for triangular meshes satisfying the maximal angle condition. Our results can also be extended to the three dimensional Morley element presented recently in [41]. Finally, some numerical results are reported that confirm our theoretical results.
引用
收藏
页码:639 / 655
页数:17
相关论文
共 50 条
  • [31] Error estimates for a helicity-preserving finite element discretisation of an incompressible magnetohydrodynamics system
    Da Veiga, Lourenco Beirao
    Hu, Kaibo
    Mascotto, Lorenzo
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2025, 59 (02) : 1075 - 1094
  • [32] Some error estimates of finite volume element method for parabolic optimal control problems
    Luo, Xianbing
    Chen, Yanping
    Huang, Yunqing
    Hou, Tianliang
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2014, 35 (02): : 145 - 165
  • [33] ANISOTROPIC ERROR ESTIMATES OF THE LINEAR NONCONFORMING VIRTUAL ELEMENT METHODS
    Cao, Shuhao
    Chen, Long
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57 (03) : 1058 - 1081
  • [34] Error Estimates of Finite Element Method for the Incompressible Ferrohydrodynamics Equations
    Mao, Shipeng
    Sun, Jiaao
    COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2025, 7 (02) : 485 - 535
  • [35] A posteriori error estimates for the finite element approximation of eigenvalue problems
    Durán, RG
    Padra, C
    Rodríguez, R
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2003, 13 (08): : 1219 - 1229
  • [36] Robust a posteriori error estimates for stabilized finite element methods
    Tobiska, L.
    Verfuerth, R.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2015, 35 (04) : 1652 - 1671
  • [37] FINITE ELEMENT ERROR ESTIMATES ON THE BOUNDARY WITH APPLICATION TO OPTIMAL CONTROL
    Apel, Thomas
    Pfefferer, Johannes
    Roesch, Arnd
    MATHEMATICS OF COMPUTATION, 2015, 84 (291) : 33 - 70
  • [38] A Posteriori Error Estimates for the Virtual Element Method for the Stokes Problem
    Wang, Gang
    Wang, Ying
    He, Yinnian
    JOURNAL OF SCIENTIFIC COMPUTING, 2020, 84 (02)
  • [39] A Posterior Error Estimates for the Nonlinear Grating Problem with Transparent Boundary Condition
    Wang, Zhoufeng
    Zhang, Yunzhang
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2015, 31 (04) : 1101 - 1118
  • [40] Crouzeix–Raviart and Raviart–Thomas finite-element error analysis on anisotropic meshes violating the maximum-angle condition
    Hiroki Ishizaka
    Kenta Kobayashi
    Takuya Tsuchiya
    Japan Journal of Industrial and Applied Mathematics, 2021, 38 : 645 - 675