On lifting q-difference operators in the Askey scheme of basic hypergeometric polynomials

被引:5
作者
Atakishiyeva, Mesuma [1 ]
Atakishiyev, Natig [2 ]
机构
[1] Univ Autonoma Estado Morelos, Fac Ciencias, Cuernavaca 62250, Morelos, Mexico
[2] Univ Nacl Autonoma Mexico, Unidad Cuernavaca, Inst Matemat, Cuernavaca 62251, Morelos, Mexico
关键词
FOURIER-GAUSS TRANSFORMS;
D O I
10.1088/1751-8113/43/14/145201
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct a q-difference operator that lifts the continuous q-Hermite polynomials H-n(x vertical bar q) of Rogers up to the continuous big q-Hermite polynomials H-n(x; a vertical bar q) on the next level in the Askey scheme of basic hypergeometric polynomials. This operator is defined as Exton's q-exponential function epsilon(q)(a(q)D(q)) in terms of the Askey-Wilson divided q-difference operator D-q and it represents a particular q-extension of the standard shift operator exp(ad/dx). We next show that one can move two steps more upwards in order first to reach the Al-Salam-Chihara family of polynomials Q(n)(x; a, b vertical bar q), and then the continuous dual q-Hahn polynomials p(n)(x; a, b, c vertical bar q). In both these cases, lifting operators, respectively, turn out to be convolution-type products of two and three one-parameter q-difference operators of the same type epsilon(q)(a(q)D(q)) at the initial step. At each step, we also determine q-difference operators that lift the weight function for the continuous q-Hermite polynomials H-n(x vertical bar q) successively up to the weight functions for H-n(x; a vertical bar q), Q(n)(x; a, b vertical bar q) and p(n)(x; a, b, c vertical bar q).
引用
收藏
页数:18
相关论文
共 19 条
[1]  
Andrews George E, 1999, Encyclopedia of Mathematics and its Applications, V71, DOI DOI 10.1017/CBO9781107325937
[2]  
ASKEY R, 1985, MEM AM MATH SOC, V54, P1
[3]   The factorization of a q-difference equation for continuous q-Hermite polynomials [J].
Atakishiyev, M. N. ;
Klimyk, A. U. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (31) :9311-9317
[4]   On a one-parameter family of q-exponential functions [J].
Atakishiyev, NM .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (10) :L223-L227
[5]   Fourier-Gauss transforms of the Askey-Wilson polynomials [J].
Atakishiyev, NM .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (24) :L815-L820
[6]  
ATAKISHIYEV NM, 1992, SPR S COMP, V19, P1
[7]   Fourier-Gauss transforms of the continuous big q-Hermite polynomials [J].
Atakishiyeva, MK ;
Atakishiyev, NM .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (16) :L559-L565
[8]   Fourier-Gauss transforms of the Al-Salam-Chihara polynomials [J].
Atakishiyeva, MK ;
Atakishiyev, NM .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (19) :L655-L661
[9]   Q-hermite polynomials and classical orthogonal polynomials [J].
Berg, C ;
Ismail, MEH .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1996, 48 (01) :43-63
[10]  
EXTON H, 1983, Q HYPERGEOMTERIC FUN